Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -1,10 +1,13 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from diffusers.utils import load_image
|
3 |
import spaces
|
4 |
-
from panna.pipeline import PipelineDepth2ImageV2
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
8 |
title = ("# [Depth2Image](https://huggingface.co/stabilityai/stable-diffusion-2-depth) with [DepthAnythingV2](https://huggingface.co/depth-anything/Depth-Anything-V2-Large-hf)\n"
|
9 |
"Depth2Image with depth map predicted by DepthAnything V2. The demo is part of [panna](https://github.com/abacws-abacus/panna) project.")
|
10 |
example_files = []
|
@@ -15,16 +18,32 @@ for n in range(1, 10):
|
|
15 |
|
16 |
@spaces.GPU
|
17 |
def infer(init_image, prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
guidance_scale=guidance_scale,
|
23 |
num_inference_steps=num_inference_steps,
|
24 |
height=height,
|
25 |
width=width,
|
26 |
seed=seed
|
27 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
with gr.Blocks() as demo:
|
|
|
1 |
+
import torch
|
2 |
import gradio as gr
|
3 |
from diffusers.utils import load_image
|
4 |
import spaces
|
5 |
+
# from panna.pipeline import PipelineDepth2ImageV2
|
6 |
+
from panna import Depth2Image, DepthAnythingV2
|
7 |
|
8 |
+
# model = PipelineDepth2ImageV2()
|
9 |
+
model_depth = DepthAnythingV2("depth-anything/Depth-Anything-V2-Large-hf", torch_dtype=torch.float32)
|
10 |
+
model_image = Depth2Image("stabilityai/stable-diffusion-2-depth")
|
11 |
title = ("# [Depth2Image](https://huggingface.co/stabilityai/stable-diffusion-2-depth) with [DepthAnythingV2](https://huggingface.co/depth-anything/Depth-Anything-V2-Large-hf)\n"
|
12 |
"Depth2Image with depth map predicted by DepthAnything V2. The demo is part of [panna](https://github.com/abacws-abacus/panna) project.")
|
13 |
example_files = []
|
|
|
18 |
|
19 |
@spaces.GPU
|
20 |
def infer(init_image, prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps):
|
21 |
+
depth = model_depth.image2depth([init_image], return_tensor=True)
|
22 |
+
return model_image.text2image(
|
23 |
+
[init_image],
|
24 |
+
depth_maps=depth,
|
25 |
+
prompt=[prompt],
|
26 |
+
negative_prompt=[negative_prompt],
|
27 |
guidance_scale=guidance_scale,
|
28 |
num_inference_steps=num_inference_steps,
|
29 |
height=height,
|
30 |
width=width,
|
31 |
seed=seed
|
32 |
+
)[0]
|
33 |
+
|
34 |
+
|
35 |
+
# @spaces.GPU
|
36 |
+
# def infer(init_image, prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps):
|
37 |
+
# return model(
|
38 |
+
# init_image,
|
39 |
+
# prompt=prompt,
|
40 |
+
# negative_prompt=negative_prompt,
|
41 |
+
# guidance_scale=guidance_scale,
|
42 |
+
# num_inference_steps=num_inference_steps,
|
43 |
+
# height=height,
|
44 |
+
# width=width,
|
45 |
+
# seed=seed
|
46 |
+
# )
|
47 |
|
48 |
|
49 |
with gr.Blocks() as demo:
|