import gradio as gr import numpy as np import random import os from PIL import Image import spaces import torch from transformers import pipeline from diffusers import StableDiffusionDepth2ImgPipeline model_id_depth = "depth-anything/Depth-Anything-V2-Large-hf" if torch.cuda.is_available(): pipe_depth = pipeline(task="depth-estimation", model=model_id_depth, device="cuda") else: pipe_depth = pipeline(task="depth-estimation", model=model_id_depth) model_id_depth2image = "stabilityai/stable-diffusion-2-depth" if torch.cuda.is_available(): pipe_depth2image = StableDiffusionDepth2ImgPipeline.from_pretrained(model_id_depth2image, torch_dtype=torch.float16).to("cuda") else: pipe_depth2image = StableDiffusionDepth2ImgPipeline.from_pretrained(model_id_depth2image) max_seed = np.iinfo(np.int32).max max_image_size = 1344 example_files = [os.path.join('assets/examples', filename) for filename in sorted(os.listdir('assets/examples'))] @spaces.GPU def infer( init_image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, max_seed) init_image = Image.fromarray(np.uint8(init_image)) predicted_depth = pipe_depth(init_image)["predicted_depth"] image = pipe_depth2image( prompt=prompt, image=init_image, depth_map=predicted_depth, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, height=height, width=width, generator=torch.Generator().manual_seed(seed) ).images[0] return image, seed with gr.Blocks() as demo: gr.Markdown("# Demo [Depth2Image](https://huggingface.co/stabilityai/stable-diffusion-2-depth) with depth map estimated by [Depth Anything V2](https://huggingface.co/depth-anything/Depth-Anything-V2-Large-hf).") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) with gr.Row(): init_image = gr.Image(label="Input Image", type='numpy') result = gr.Image(label="Result") with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative Prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=max_seed, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=max_image_size, step=64, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=max_image_size, step=64, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=5, ) gr.on( triggers=[run_button.click, prompt.submit, negative_prompt.submit], fn=infer, inputs=[init_image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed] ) examples = gr.Examples( examples=example_files, inputs=[init_image], outputs=[result, seed] ) demo.queue().launch()