File size: 2,934 Bytes
6fa23b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from collections import namedtuple, deque
import random
import torch
import numpy as np

class Replay_Buffer(object):
    """Replay buffer to store past experiences that the agent can then use for training data"""
    
    def __init__(self, buffer_size, batch_size, seed, device=None):

        self.memory = deque(maxlen=buffer_size)
        self.batch_size = batch_size
        self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
        self.seed = random.seed(seed)
        if device:
            self.device = torch.device(device)
        else:
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    def add_experience(self, states, actions, rewards, next_states, dones):
        """Adds experience(s) into the replay buffer"""
        if type(dones) == list:
            assert type(dones[0]) != list, "A done shouldn't be a list"
            experiences = [self.experience(state, action, reward, next_state, done)
                           for state, action, reward, next_state, done in
                           zip(states, actions, rewards, next_states, dones)]
            self.memory.extend(experiences)
        else:
            experience = self.experience(states, actions, rewards, next_states, dones)
            self.memory.append(experience)
   
    def sample(self, num_experiences=None, separate_out_data_types=True):
        """Draws a random sample of experience from the replay buffer"""
        experiences = self.pick_experiences(num_experiences)
        if separate_out_data_types:
            states, actions, rewards, next_states, dones = self.separate_out_data_types(experiences)
            return states, actions, rewards, next_states, dones
        else:
            return experiences
            
    def separate_out_data_types(self, experiences):
        """Puts the sampled experience into the correct format for a PyTorch neural network"""
        states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(self.device)
        actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(self.device)
        rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(self.device)
        next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(self.device)
        dones = torch.from_numpy(np.vstack([int(e.done) for e in experiences if e is not None])).float().to(self.device)
        
        return states, actions, rewards, next_states, dones
    
    def pick_experiences(self, num_experiences=None):
        if num_experiences is not None: batch_size = num_experiences
        else: batch_size = self.batch_size
        return random.sample(self.memory, k=batch_size)

    def __len__(self):
        return len(self.memory)