Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import json | |
import streamlit as st | |
from DDQN import DoubleDeepQNetwork | |
from antiJamEnv import AntiJamEnv | |
def test(jammer_type, channel_switching_cost): | |
env = AntiJamEnv(jammer_type, channel_switching_cost) | |
ob_space = env.observation_space | |
ac_space = env.action_space | |
s_size = ob_space.shape[0] | |
a_size = ac_space.n | |
max_env_steps = 100 | |
TEST_Episodes = 10 | |
env._max_episode_steps = max_env_steps | |
epsilon = 1.0 # exploration rate | |
epsilon_min = 0.01 | |
epsilon_decay = 0.999 | |
discount_rate = 0.95 | |
lr = 0.001 | |
agentName = f'./data/DDQNAgent_{jammer_type}_csc_{channel_switching_cost}' | |
DDQN_agent = DoubleDeepQNetwork(s_size, a_size, lr, discount_rate, epsilon, epsilon_min, epsilon_decay) | |
DDQN_agent.model = DDQN_agent.load_saved_model(agentName) | |
rewards = [] # Store rewards for graphing | |
epsilons = [] # Store the Explore/Exploit | |
# Testing agent | |
for e_test in range(TEST_Episodes): | |
state = env.reset() | |
state = np.reshape(state, [1, s_size]) | |
tot_rewards = 0 | |
for t_test in range(max_env_steps): | |
action = DDQN_agent.test_action(state) | |
next_state, reward, done, _ = env.step(action) | |
if done or t_test == max_env_steps - 1: | |
rewards.append(tot_rewards) | |
epsilons.append(0) # We are doing full exploit | |
st.write(f"episode: {e_test}/{TEST_Episodes}, score: {tot_rewards}, e: {DDQN_agent.epsilon}") | |
break | |
next_state = np.reshape(next_state, [1, s_size]) | |
tot_rewards += reward | |
# DON'T STORE ANYTHING DURING TESTING | |
state = next_state | |
# Plotting | |
rolling_average = np.convolve(rewards, np.ones(10) / 10, mode='valid') | |
# Create a new Streamlit figure | |
fig = plt.figure() | |
plt.plot(rewards, label='Rewards') | |
plt.plot(rolling_average, color='black', label='Rolling Average') | |
plt.axhline(y=max_env_steps - 0.10 * max_env_steps, color='r', linestyle='-', label='Solved Line') | |
eps_graph = [100 * x for x in epsilons] | |
plt.plot(eps_graph, color='g', linestyle='-', label='Epsilons') | |
plt.xlabel('Episodes') | |
plt.ylabel('Rewards') | |
plt.title(f'Testing Rewards - {jammer_type}, CSC: {channel_switching_cost}') | |
plt.legend() | |
# Display the Streamlit figure using streamlit.pyplot | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
st.pyplot(fig) | |
# Save the figure | |
plot_name = f'./data/test_rewards_{jammer_type}_csc_{channel_switching_cost}.png' | |
plt.savefig(plot_name, bbox_inches='tight') | |
plt.close(fig) # Close the figure to release resources | |
# Save Results | |
# Rewards | |
fileName = f'./data/test_rewards_{jammer_type}_csc_{channel_switching_cost}.json' | |
with open(fileName, 'w') as f: | |
json.dump(rewards, f) | |