jam_shield_LLM_app / trainer.py
asataura's picture
Improving the UI
90f9ad1
raw
history blame
3.47 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import json
import streamlit as st
from DDQN import DoubleDeepQNetwork
from antiJamEnv import AntiJamEnv
def train(jammer_type, channel_switching_cost):
st.subheader("Training Progress")
progress_bar = st.progress(0)
status_text = st.empty()
env = AntiJamEnv(jammer_type, channel_switching_cost)
ob_space = env.observation_space
ac_space = env.action_space
s_size = ob_space.shape[0]
a_size = ac_space.n
max_env_steps = 100
TRAIN_Episodes = 20
env._max_episode_steps = max_env_steps
epsilon = 1.0
epsilon_min = 0.01
epsilon_decay = 0.999
discount_rate = 0.95
lr = 0.001
batch_size = 32
DDQN_agent = DoubleDeepQNetwork(s_size, a_size, lr, discount_rate, epsilon, epsilon_min, epsilon_decay)
rewards = []
epsilons = []
for e in range(TRAIN_Episodes):
state = env.reset()
state = np.reshape(state, [1, s_size])
tot_rewards = 0
for time in range(max_env_steps):
action = DDQN_agent.action(state)
next_state, reward, done, _ = env.step(action)
next_state = np.reshape(next_state, [1, s_size])
tot_rewards += reward
DDQN_agent.store(state, action, reward, next_state, done)
state = next_state
if len(DDQN_agent.memory) > batch_size:
DDQN_agent.experience_replay(batch_size)
if done or time == max_env_steps - 1:
rewards.append(tot_rewards)
epsilons.append(DDQN_agent.epsilon)
status_text.text(f"Episode: {e+1}/{TRAIN_Episodes}, Reward: {tot_rewards}, Epsilon: {DDQN_agent.epsilon:.3f}")
progress_bar.progress((e + 1) / TRAIN_Episodes)
break
DDQN_agent.update_target_from_model()
if len(rewards) > 10 and np.average(rewards[-10:]) >= max_env_steps - 0.10 * max_env_steps:
break
st.sidebar.success("Training completed!")
# Plotting
rolling_average = np.convolve(rewards, np.ones(10) / 10, mode='valid')
# Create a new Streamlit figure for the training graph
fig, ax = plt.subplots(figsize=(8, 6))
ax.plot(rewards, label='Rewards')
ax.plot(rolling_average, color='black', label='Rolling Average')
ax.axhline(y=max_env_steps - 0.10 * max_env_steps, color='r', linestyle='-', label='Solved Line')
eps_graph = [100 * x for x in epsilons]
ax.plot(eps_graph, color='g', linestyle='-', label='Epsilons')
ax.set_xlabel('Episodes')
ax.set_ylabel('Rewards')
ax.set_title(f'Training Rewards - {jammer_type}, CSC: {channel_switching_cost}')
ax.legend()
# Display the Streamlit figure using streamlit.pyplot
st.set_option('deprecation.showPyplotGlobalUse', False)
st.subheader("Training Graph")
st.pyplot(fig)
# Save the figure
plot_name = f'./data/train_rewards_{jammer_type}_csc_{channel_switching_cost}.png'
plt.savefig(plot_name, bbox_inches='tight')
plt.close(fig) # Close the figure to release resources
# Save Results
# Rewards
fileName = f'./data/train_rewards_{jammer_type}_csc_{channel_switching_cost}.json'
with open(fileName, 'w') as f:
json.dump(rewards, f)
# Save the agent as a SavedAgent.
agentName = f'./data/DDQNAgent_{jammer_type}_csc_{channel_switching_cost}'
DDQN_agent.save_model(agentName)