Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import streamlit as st | |
from DDQN import DoubleDeepQNetwork | |
from antiJamEnv import AntiJamEnv | |
from langchain import HuggingFaceHub, PromptTemplate, LLMChain | |
repo_id = "tiiuae/falcon-7b-instruct" | |
huggingfacehub_api_token = "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" # Replace with your actual API token | |
llm = HuggingFaceHub(huggingfacehub_api_token=huggingfacehub_api_token, | |
repo_id=repo_id, | |
model_kwargs={"temperature":0.2, "max_new_tokens":2000}) | |
template = """You are an AI trained to analyze and provide insights about training graphs in the domain of deep | |
reinforcement learning. Given the following data about a graph: {data}, provide detailed insights. """ | |
prompt = PromptTemplate(template=template, input_variables=["data"]) | |
llm_chain = LLMChain(prompt=prompt, verbose=True, llm=llm) | |
def train(jammer_type, channel_switching_cost): | |
st.subheader("DRL Training Progress") | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
env = AntiJamEnv(jammer_type, channel_switching_cost) | |
ob_space = env.observation_space | |
ac_space = env.action_space | |
s_size = ob_space.shape[0] | |
a_size = ac_space.n | |
max_env_steps = 100 | |
TRAIN_Episodes = 5 | |
env._max_episode_steps = max_env_steps | |
epsilon = 1.0 | |
epsilon_min = 0.01 | |
epsilon_decay = 0.999 | |
discount_rate = 0.95 | |
lr = 0.001 | |
batch_size = 32 | |
DDQN_agent = DoubleDeepQNetwork(s_size, a_size, lr, discount_rate, epsilon, epsilon_min, epsilon_decay) | |
rewards = [] | |
epsilons = [] | |
for e in range(TRAIN_Episodes): | |
state = env.reset() | |
state = np.reshape(state, [1, s_size]) | |
tot_rewards = 0 | |
for time in range(max_env_steps): | |
action = DDQN_agent.action(state) | |
next_state, reward, done, _ = env.step(action) | |
next_state = np.reshape(next_state, [1, s_size]) | |
tot_rewards += reward | |
DDQN_agent.store(state, action, reward, next_state, done) | |
state = next_state | |
if len(DDQN_agent.memory) > batch_size: | |
DDQN_agent.experience_replay(batch_size) | |
if done or time == max_env_steps - 1: | |
rewards.append(tot_rewards) | |
epsilons.append(DDQN_agent.epsilon) | |
status_text.text( | |
f"Episode: {e + 1}/{TRAIN_Episodes}, Reward: {tot_rewards}, Epsilon: {DDQN_agent.epsilon:.3f}") | |
progress_bar.progress((e + 1) / TRAIN_Episodes) | |
break | |
DDQN_agent.update_target_from_model() | |
if len(rewards) > 10 and np.average(rewards[-10:]) >= max_env_steps - 0.10 * max_env_steps: | |
break | |
st.sidebar.success("DRL Training completed!") | |
# Plotting | |
rolling_average = np.convolve(rewards, np.ones(10) / 10, mode='valid') | |
solved_threshold = max_env_steps - 0.10 * max_env_steps | |
# Create a new Streamlit figure for the training graph | |
fig, ax = plt.subplots(figsize=(8, 6)) | |
ax.plot(rewards, label='Rewards') | |
ax.plot(rolling_average, color='black', label='Rolling Average') | |
ax.axhline(y=solved_threshold, color='r', linestyle='-', label='Solved Line') | |
eps_graph = [100 * x for x in epsilons] | |
ax.plot(eps_graph, color='g', linestyle='-', label='Epsilons') | |
ax.set_xlabel('Episodes') | |
ax.set_ylabel('Rewards') | |
ax.set_title(f'Training Rewards - {jammer_type}, CSC: {channel_switching_cost}') | |
ax.legend() | |
insights = generate_insights_langchain(rewards, rolling_average, epsilons, solved_threshold) | |
with st.container(): | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Training Graph") | |
st.pyplot(fig) | |
with col2: | |
st.subheader("Graph Explanation") | |
st.write(insights) | |
plt.close(fig) # Close the figure to release resources | |
return DDQN_agent | |
def generate_insights_langchain(rewards, rolling_average, epsilons, solved_threshold): | |
data_description = ( | |
f"The graph represents training rewards over episodes. " | |
f"The actual rewards range from {min(rewards):.2f} to {max(rewards):.2f} with an average of {np.mean(rewards):.2f}. " | |
f"The rolling average values range from {min(rolling_average):.2f} to {max(rolling_average):.2f} with an average of {np.mean(rolling_average):.2f}. " | |
f"The epsilon values range from {min(epsilons):.2f} to {max(epsilons):.2f} with an average exploration rate of {np.mean(epsilons):.2f}. " | |
f"The solved threshold is set at {solved_threshold:.2f}." | |
) | |
result = llm_chain.predict(data=data_description) | |
return result | |