Spaces:
Sleeping
Sleeping
Adding the description of the app
Browse files- trainer.py +10 -1
trainer.py
CHANGED
@@ -24,6 +24,15 @@ llm_chain = LLMChain(prompt=prompt, verbose=True, llm=llm)
|
|
24 |
|
25 |
|
26 |
def train(jammer_type, channel_switching_cost):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
st.subheader("DRL Training Progress")
|
28 |
progress_bar = st.progress(0)
|
29 |
status_text = st.empty()
|
@@ -35,7 +44,7 @@ def train(jammer_type, channel_switching_cost):
|
|
35 |
s_size = ob_space.shape[0]
|
36 |
a_size = ac_space.n
|
37 |
max_env_steps = 100
|
38 |
-
TRAIN_Episodes =
|
39 |
env._max_episode_steps = max_env_steps
|
40 |
|
41 |
epsilon = 1.0
|
|
|
24 |
|
25 |
|
26 |
def train(jammer_type, channel_switching_cost):
|
27 |
+
st.markdown("""
|
28 |
+
In this demonstration, we address the challenge of mitigating jamming attacks using Deep Reinforcement Learning (DRL).
|
29 |
+
The process comprises three main steps:
|
30 |
+
|
31 |
+
1. **DRL Training**: An agent is trained using DRL to tackle jamming attacks.
|
32 |
+
2. **Training Performance Visualization**: Post-training, the performance metrics (rewards, exploration rate, etc.) are visualized to assess the agent's proficiency.
|
33 |
+
3. **Insights Generation with Falcon 7B LLM**: Leveraging the Falcon 7B LLM, we generate insights from the training graphs, elucidating the agent's behavior and achievements.
|
34 |
+
|
35 |
+
""", unsafe_allow_html=True)
|
36 |
st.subheader("DRL Training Progress")
|
37 |
progress_bar = st.progress(0)
|
38 |
status_text = st.empty()
|
|
|
44 |
s_size = ob_space.shape[0]
|
45 |
a_size = ac_space.n
|
46 |
max_env_steps = 100
|
47 |
+
TRAIN_Episodes = 50
|
48 |
env._max_episode_steps = max_env_steps
|
49 |
|
50 |
epsilon = 1.0
|