Spaces:
Sleeping
Sleeping
Adding Streamlit Pyplot
Browse files- app.py +12 -9
- tester.py +26 -17
- trainer.py +25 -16
app.py
CHANGED
@@ -25,17 +25,20 @@ def main():
|
|
25 |
st.write(f"Channel Switching Cost: {channel_switching_cost}")
|
26 |
|
27 |
if st.button('Train'):
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
34 |
if st.button('Test'):
|
35 |
-
|
36 |
-
st.write('Testing Starting')
|
37 |
-
agentName = f'savedAgents/DDQNAgent_{jammer_type}_csc_{channel_switching_cost}'
|
38 |
if os.path.exists(agentName):
|
|
|
|
|
39 |
tester.test(jammer_type, channel_switching_cost)
|
40 |
st.write("Testing completed")
|
41 |
st.write("==================================================")
|
|
|
25 |
st.write(f"Channel Switching Cost: {channel_switching_cost}")
|
26 |
|
27 |
if st.button('Train'):
|
28 |
+
agentName = f'DDQNAgent_{jammer_type}_csc_{channel_switching_cost}'
|
29 |
+
if os.path.exists(agentName):
|
30 |
+
st.write("Agent has been trained already!!!")
|
31 |
+
else:
|
32 |
+
st.write("==================================================")
|
33 |
+
st.write('Training Starting')
|
34 |
+
trainer.train(jammer_type, channel_switching_cost)
|
35 |
+
st.write("Training completed")
|
36 |
+
st.write("==================================================")
|
37 |
if st.button('Test'):
|
38 |
+
agentName = f'DDQNAgent_{jammer_type}_csc_{channel_switching_cost}'
|
|
|
|
|
39 |
if os.path.exists(agentName):
|
40 |
+
st.write("==================================================")
|
41 |
+
st.write('Testing Starting')
|
42 |
tester.test(jammer_type, channel_switching_cost)
|
43 |
st.write("Testing completed")
|
44 |
st.write("==================================================")
|
tester.py
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
import json
|
|
|
7 |
from DDQN import DoubleDeepQNetwork
|
8 |
from antiJamEnv import AntiJamEnv
|
9 |
|
@@ -12,12 +13,11 @@ def test(jammer_type, channel_switching_cost):
|
|
12 |
env = AntiJamEnv(jammer_type, channel_switching_cost)
|
13 |
ob_space = env.observation_space
|
14 |
ac_space = env.action_space
|
15 |
-
|
16 |
-
|
17 |
|
18 |
s_size = ob_space.shape[0]
|
19 |
a_size = ac_space.n
|
20 |
-
total_episodes = 200
|
21 |
max_env_steps = 100
|
22 |
TEST_Episodes = 100
|
23 |
env._max_episode_steps = max_env_steps
|
@@ -28,7 +28,7 @@ def test(jammer_type, channel_switching_cost):
|
|
28 |
discount_rate = 0.95
|
29 |
lr = 0.001
|
30 |
|
31 |
-
agentName = f'
|
32 |
DDQN_agent = DoubleDeepQNetwork(s_size, a_size, lr, discount_rate, epsilon, epsilon_min, epsilon_decay)
|
33 |
DDQN_agent.model = DDQN_agent.load_saved_model(agentName)
|
34 |
rewards = [] # Store rewards for graphing
|
@@ -45,8 +45,7 @@ def test(jammer_type, channel_switching_cost):
|
|
45 |
if done or t_test == max_env_steps - 1:
|
46 |
rewards.append(tot_rewards)
|
47 |
epsilons.append(0) # We are doing full exploit
|
48 |
-
|
49 |
-
.format(e_test, TEST_Episodes, tot_rewards, 0))
|
50 |
break
|
51 |
next_state = np.reshape(next_state, [1, s_size])
|
52 |
tot_rewards += reward
|
@@ -54,21 +53,31 @@ def test(jammer_type, channel_switching_cost):
|
|
54 |
state = next_state
|
55 |
|
56 |
# Plotting
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
plt.
|
61 |
-
plt.
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
65 |
plt.xlabel('Episodes')
|
66 |
plt.ylabel('Rewards')
|
67 |
-
plt.
|
68 |
-
plt.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Save Results
|
71 |
# Rewards
|
72 |
-
fileName = f'
|
73 |
with open(fileName, 'w') as f:
|
74 |
json.dump(rewards, f)
|
|
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
import json
|
7 |
+
import streamlit as st
|
8 |
from DDQN import DoubleDeepQNetwork
|
9 |
from antiJamEnv import AntiJamEnv
|
10 |
|
|
|
13 |
env = AntiJamEnv(jammer_type, channel_switching_cost)
|
14 |
ob_space = env.observation_space
|
15 |
ac_space = env.action_space
|
16 |
+
st.write(f"Observation space: , {ob_space}")
|
17 |
+
st.write(f"Action space: {ac_space}")
|
18 |
|
19 |
s_size = ob_space.shape[0]
|
20 |
a_size = ac_space.n
|
|
|
21 |
max_env_steps = 100
|
22 |
TEST_Episodes = 100
|
23 |
env._max_episode_steps = max_env_steps
|
|
|
28 |
discount_rate = 0.95
|
29 |
lr = 0.001
|
30 |
|
31 |
+
agentName = f'DDQNAgent_{jammer_type}_csc_{channel_switching_cost}'
|
32 |
DDQN_agent = DoubleDeepQNetwork(s_size, a_size, lr, discount_rate, epsilon, epsilon_min, epsilon_decay)
|
33 |
DDQN_agent.model = DDQN_agent.load_saved_model(agentName)
|
34 |
rewards = [] # Store rewards for graphing
|
|
|
45 |
if done or t_test == max_env_steps - 1:
|
46 |
rewards.append(tot_rewards)
|
47 |
epsilons.append(0) # We are doing full exploit
|
48 |
+
st.write(f"episode: {e_test}/{TEST_Episodes}, score: {tot_rewards}, e: {DDQN_agent.epsilon}")
|
|
|
49 |
break
|
50 |
next_state = np.reshape(next_state, [1, s_size])
|
51 |
tot_rewards += reward
|
|
|
53 |
state = next_state
|
54 |
|
55 |
# Plotting
|
56 |
+
rolling_average = np.convolve(rewards, np.ones(10) / 10, mode='valid')
|
57 |
+
|
58 |
+
# Create a new Streamlit figure
|
59 |
+
fig = plt.figure()
|
60 |
+
plt.plot(rewards, label='Rewards')
|
61 |
+
plt.plot(rolling_average, color='black', label='Rolling Average')
|
62 |
+
plt.axhline(y=max_env_steps - 0.10 * max_env_steps, color='r', linestyle='-', label='Solved Line')
|
63 |
+
eps_graph = [100 * x for x in epsilons]
|
64 |
+
plt.plot(eps_graph, color='g', linestyle='-', label='Epsilons')
|
65 |
plt.xlabel('Episodes')
|
66 |
plt.ylabel('Rewards')
|
67 |
+
plt.title(f'Testing Rewards - {jammer_type}, CSC: {channel_switching_cost}')
|
68 |
+
plt.legend()
|
69 |
+
|
70 |
+
# Display the Streamlit figure using streamlit.pyplot
|
71 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
72 |
+
st.pyplot(fig)
|
73 |
+
|
74 |
+
# Save the figure
|
75 |
+
plot_name = f'test_rewards_{jammer_type}_csc_{channel_switching_cost}.png'
|
76 |
+
plt.savefig(plot_name, bbox_inches='tight')
|
77 |
+
plt.close(fig) # Close the figure to release resources
|
78 |
|
79 |
# Save Results
|
80 |
# Rewards
|
81 |
+
fileName = f'test_rewards_{jammer_type}_csc_{channel_switching_cost}.json'
|
82 |
with open(fileName, 'w') as f:
|
83 |
json.dump(rewards, f)
|
trainer.py
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
import json
|
|
|
7 |
from DDQN import DoubleDeepQNetwork
|
8 |
from antiJamEnv import AntiJamEnv
|
9 |
|
@@ -12,8 +13,8 @@ def train(jammer_type, channel_switching_cost):
|
|
12 |
env = AntiJamEnv(jammer_type, channel_switching_cost)
|
13 |
ob_space = env.observation_space
|
14 |
ac_space = env.action_space
|
15 |
-
|
16 |
-
|
17 |
|
18 |
s_size = ob_space.shape[0]
|
19 |
a_size = ac_space.n
|
@@ -38,7 +39,6 @@ def train(jammer_type, channel_switching_cost):
|
|
38 |
# print(f"Initial state is: {state}")
|
39 |
state = np.reshape(state, [1, s_size]) # Resize to store in memory to pass to .predict
|
40 |
tot_rewards = 0
|
41 |
-
previous_action = 0
|
42 |
for time in range(max_env_steps): # 200 is when you "solve" the game. This can continue forever as far as I know
|
43 |
action = DDQN_agent.action(state)
|
44 |
next_state, reward, done, _ = env.step(action)
|
@@ -48,8 +48,7 @@ def train(jammer_type, channel_switching_cost):
|
|
48 |
if done or time == max_env_steps - 1:
|
49 |
rewards.append(tot_rewards)
|
50 |
epsilons.append(DDQN_agent.epsilon)
|
51 |
-
|
52 |
-
.format(e, TRAIN_Episodes, tot_rewards, DDQN_agent.epsilon))
|
53 |
break
|
54 |
# Applying channel switching cost
|
55 |
next_state = np.reshape(next_state, [1, s_size])
|
@@ -68,25 +67,35 @@ def train(jammer_type, channel_switching_cost):
|
|
68 |
break
|
69 |
|
70 |
# Plotting
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
plt.
|
75 |
-
plt.
|
76 |
-
|
|
|
77 |
eps_graph = [100 * x for x in epsilons]
|
78 |
-
plt.plot(eps_graph, color='g', linestyle='-')
|
79 |
plt.xlabel('Episodes')
|
80 |
plt.ylabel('Rewards')
|
81 |
-
plt.
|
82 |
-
plt.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Save Results
|
85 |
# Rewards
|
86 |
-
fileName = f'
|
87 |
with open(fileName, 'w') as f:
|
88 |
json.dump(rewards, f)
|
89 |
|
90 |
# Save the agent as a SavedAgent.
|
91 |
-
agentName = f'
|
92 |
DDQN_agent.save_model(agentName)
|
|
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
import json
|
7 |
+
import streamlit as st
|
8 |
from DDQN import DoubleDeepQNetwork
|
9 |
from antiJamEnv import AntiJamEnv
|
10 |
|
|
|
13 |
env = AntiJamEnv(jammer_type, channel_switching_cost)
|
14 |
ob_space = env.observation_space
|
15 |
ac_space = env.action_space
|
16 |
+
st.write(f"Observation space: , {ob_space}")
|
17 |
+
st.write(f"Action space: {ac_space}")
|
18 |
|
19 |
s_size = ob_space.shape[0]
|
20 |
a_size = ac_space.n
|
|
|
39 |
# print(f"Initial state is: {state}")
|
40 |
state = np.reshape(state, [1, s_size]) # Resize to store in memory to pass to .predict
|
41 |
tot_rewards = 0
|
|
|
42 |
for time in range(max_env_steps): # 200 is when you "solve" the game. This can continue forever as far as I know
|
43 |
action = DDQN_agent.action(state)
|
44 |
next_state, reward, done, _ = env.step(action)
|
|
|
48 |
if done or time == max_env_steps - 1:
|
49 |
rewards.append(tot_rewards)
|
50 |
epsilons.append(DDQN_agent.epsilon)
|
51 |
+
st.write(f"episode: {e}/{TRAIN_Episodes}, score: {tot_rewards}, e: {DDQN_agent.epsilon}")
|
|
|
52 |
break
|
53 |
# Applying channel switching cost
|
54 |
next_state = np.reshape(next_state, [1, s_size])
|
|
|
67 |
break
|
68 |
|
69 |
# Plotting
|
70 |
+
rolling_average = np.convolve(rewards, np.ones(10) / 10, mode='valid')
|
71 |
+
|
72 |
+
# Create a new Streamlit figure
|
73 |
+
fig = plt.figure()
|
74 |
+
plt.plot(rewards, label='Rewards')
|
75 |
+
plt.plot(rolling_average, color='black', label='Rolling Average')
|
76 |
+
plt.axhline(y=max_env_steps - 0.10 * max_env_steps, color='r', linestyle='-', label='Solved Line')
|
77 |
eps_graph = [100 * x for x in epsilons]
|
78 |
+
plt.plot(eps_graph, color='g', linestyle='-', label='Epsilons')
|
79 |
plt.xlabel('Episodes')
|
80 |
plt.ylabel('Rewards')
|
81 |
+
plt.title(f'Training Rewards - {jammer_type}, CSC: {channel_switching_cost}')
|
82 |
+
plt.legend()
|
83 |
+
|
84 |
+
# Display the Streamlit figure using streamlit.pyplot
|
85 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
86 |
+
st.pyplot(fig)
|
87 |
+
|
88 |
+
# Save the figure
|
89 |
+
plot_name = f'train_rewards_{jammer_type}_csc_{channel_switching_cost}.png'
|
90 |
+
plt.savefig(plot_name, bbox_inches='tight')
|
91 |
+
plt.close(fig) # Close the figure to release resources
|
92 |
|
93 |
# Save Results
|
94 |
# Rewards
|
95 |
+
fileName = f'train_rewards_{jammer_type}_csc_{channel_switching_cost}.json'
|
96 |
with open(fileName, 'w') as f:
|
97 |
json.dump(rewards, f)
|
98 |
|
99 |
# Save the agent as a SavedAgent.
|
100 |
+
agentName = f'DDQNAgent_{jammer_type}_csc_{channel_switching_cost}'
|
101 |
DDQN_agent.save_model(agentName)
|