asataura commited on
Commit
c01ebaa
·
1 Parent(s): 356a1ea

Testing the LLM pipeline

Browse files
Files changed (2) hide show
  1. app.py +39 -25
  2. transformers_setup.py +0 -11
app.py CHANGED
@@ -5,34 +5,48 @@ import streamlit as st
5
  import os
6
  from trainer import train
7
  from tester import test
8
- from transformers_setup import pipeline # Import the pipeline from the setup module
 
9
 
10
 
11
  def main():
12
- st.title("Beyond the Anti-Jam: Integration of DRL with LLM")
13
-
14
- st.sidebar.header("Make Your Environment Configuration")
15
- mode = st.sidebar.radio("Choose Mode", ["Auto", "Manual"])
16
-
17
- if mode == "Auto":
18
- jammer_type = "dynamic"
19
- channel_switching_cost = 0.1
20
- else:
21
- jammer_type = st.sidebar.selectbox("Select Jammer Type", ["constant", "sweeping", "random", "dynamic"])
22
- channel_switching_cost = st.sidebar.selectbox("Select Channel Switching Cost", [0, 0.05, 0.1, 0.15, 0.2])
23
-
24
- st.sidebar.subheader("Configuration:")
25
- st.sidebar.write(f"Jammer Type: {jammer_type}")
26
- st.sidebar.write(f"Channel Switching Cost: {channel_switching_cost}")
27
-
28
- start_button = st.sidebar.button('Start')
29
-
30
- if start_button:
31
- agent = perform_training(jammer_type, channel_switching_cost)
32
- st.subheader("Generating Insights of the DRL-Training")
33
- text = pipeline("Discuss this topic: Integrating LLMs to DRL-based anti-jamming.")
34
- st.write(text)
35
- test(agent, jammer_type, channel_switching_cost)
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
 
38
  def perform_training(jammer_type, channel_switching_cost):
 
5
  import os
6
  from trainer import train
7
  from tester import test
8
+ import transformers
9
+ from transformers import TFAutoModelForCausalLM, AutoTokenizer
10
 
11
 
12
  def main():
13
+ st.subheader("Generating Insights of the DRL-Training")
14
+ model_name = "tiiuae/falcon-7b-instruct"
15
+ model = TFAutoModelForCausalLM.from_pretrained(model_name)
16
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
17
+ pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=100,
18
+ temperature=0.7)
19
+ text = pipeline("Discuss this topic: Integrating LLMs to DRL-based anti-jamming.")
20
+ st.write(text)
21
+ # st.title("Beyond the Anti-Jam: Integration of DRL with LLM")
22
+ #
23
+ # st.sidebar.header("Make Your Environment Configuration")
24
+ # mode = st.sidebar.radio("Choose Mode", ["Auto", "Manual"])
25
+ #
26
+ # if mode == "Auto":
27
+ # jammer_type = "dynamic"
28
+ # channel_switching_cost = 0.1
29
+ # else:
30
+ # jammer_type = st.sidebar.selectbox("Select Jammer Type", ["constant", "sweeping", "random", "dynamic"])
31
+ # channel_switching_cost = st.sidebar.selectbox("Select Channel Switching Cost", [0, 0.05, 0.1, 0.15, 0.2])
32
+ #
33
+ # st.sidebar.subheader("Configuration:")
34
+ # st.sidebar.write(f"Jammer Type: {jammer_type}")
35
+ # st.sidebar.write(f"Channel Switching Cost: {channel_switching_cost}")
36
+ #
37
+ # start_button = st.sidebar.button('Start')
38
+ #
39
+ # if start_button:
40
+ # agent = perform_training(jammer_type, channel_switching_cost)
41
+ # st.subheader("Generating Insights of the DRL-Training")
42
+ # model_name = "tiiuae/falcon-7b-instruct"
43
+ # model = TFAutoModelForCausalLM.from_pretrained(model_name)
44
+ # tokenizer = AutoTokenizer.from_pretrained(model_name)
45
+ # pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=100,
46
+ # temperature=0.7)
47
+ # text = pipeline("Discuss this topic: Integrating LLMs to DRL-based anti-jamming.")
48
+ # st.write(text)
49
+ # test(agent, jammer_type, channel_switching_cost)
50
 
51
 
52
  def perform_training(jammer_type, channel_switching_cost):
transformers_setup.py DELETED
@@ -1,11 +0,0 @@
1
- #!/usr/bin/env python3
2
- # -*- coding: utf-8 -*-
3
-
4
-
5
- import transformers
6
- from transformers import TFAutoModelForCausalLM, AutoTokenizer
7
-
8
- model_name = "tiiuae/falcon-7b-instruct"
9
- model = TFAutoModelForCausalLM.from_pretrained(model_name)
10
- tokenizer = AutoTokenizer.from_pretrained(model_name)
11
- pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=100, temperature=0.7)