Spaces:
Sleeping
Sleeping
Handling Signal
Browse files- app.py +9 -7
- trainer.py +1 -1
app.py
CHANGED
@@ -30,17 +30,19 @@ def main():
|
|
30 |
|
31 |
if start_button:
|
32 |
agent = perform_training(jammer_type, channel_switching_cost)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
test(agent, jammer_type, channel_switching_cost)
|
34 |
|
|
|
35 |
def perform_training(jammer_type, channel_switching_cost):
|
36 |
agent = train(jammer_type, channel_switching_cost)
|
37 |
-
st.subheader("Generating Insights of the DRL-Training")
|
38 |
-
model_name = "tiiuae/falcon-7b-instruct"
|
39 |
-
model = TFAutoModelForCausalLM.from_pretrained(model_name)
|
40 |
-
tokenizer = TFAutoTokenizer.from_pretrained(model_name)
|
41 |
-
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=100, temperature=0.7)
|
42 |
-
text = pipeline("Discuss this topic: Integrating LLMs to DRL-based anti-jamming.")
|
43 |
-
st.write(text)
|
44 |
return agent
|
45 |
|
46 |
|
|
|
30 |
|
31 |
if start_button:
|
32 |
agent = perform_training(jammer_type, channel_switching_cost)
|
33 |
+
st.subheader("Generating Insights of the DRL-Training")
|
34 |
+
model_name = "tiiuae/falcon-7b-instruct"
|
35 |
+
model = TFAutoModelForCausalLM.from_pretrained(model_name)
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
37 |
+
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=100,
|
38 |
+
temperature=0.7)
|
39 |
+
text = pipeline("Discuss this topic: Integrating LLMs to DRL-based anti-jamming.")
|
40 |
+
st.write(text)
|
41 |
test(agent, jammer_type, channel_switching_cost)
|
42 |
|
43 |
+
|
44 |
def perform_training(jammer_type, channel_switching_cost):
|
45 |
agent = train(jammer_type, channel_switching_cost)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
return agent
|
47 |
|
48 |
|
trainer.py
CHANGED
@@ -21,7 +21,7 @@ def train(jammer_type, channel_switching_cost):
|
|
21 |
s_size = ob_space.shape[0]
|
22 |
a_size = ac_space.n
|
23 |
max_env_steps = 100
|
24 |
-
TRAIN_Episodes =
|
25 |
env._max_episode_steps = max_env_steps
|
26 |
|
27 |
epsilon = 1.0
|
|
|
21 |
s_size = ob_space.shape[0]
|
22 |
a_size = ac_space.n
|
23 |
max_env_steps = 100
|
24 |
+
TRAIN_Episodes = 5
|
25 |
env._max_episode_steps = max_env_steps
|
26 |
|
27 |
epsilon = 1.0
|