#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import streamlit as st from DDQN import DoubleDeepQNetwork from antiJamEnv import AntiJamEnv from langchain import HuggingFaceHub, PromptTemplate, LLMChain repo_id = "tiiuae/falcon-7b-instruct" huggingfacehub_api_token = "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" # Replace with your actual API token llm = HuggingFaceHub(huggingfacehub_api_token=huggingfacehub_api_token, repo_id=repo_id, model_kwargs={"temperature":0.2, "max_new_tokens":2000}) template = """You are an AI trained to analyze and provide insights about training graphs in the domain of deep reinforcement learning. Given the following data about a graph: {data}, provide detailed insights. """ prompt = PromptTemplate(template=template, input_variables=["data"]) llm_chain = LLMChain(prompt=prompt, verbose=True, llm=llm) def train(jammer_type, channel_switching_cost): st.markdown(""" In this demonstration, we address the challenge of mitigating jamming attacks using Deep Reinforcement Learning (DRL). The process comprises three main steps: 1. **DRL Training**: An agent is trained using DRL to tackle jamming attacks. 2. **Training Performance Visualization**: Post-training, the performance metrics (rewards, exploration rate, etc.) are visualized to assess the agent's proficiency. 3. **Insights Generation with Falcon 7B LLM**: Leveraging the Falcon 7B LLM, we generate insights from the training graphs, elucidating the agent's behavior and achievements. """, unsafe_allow_html=True) st.subheader("DRL Training Progress") progress_bar = st.progress(0) status_text = st.empty() env = AntiJamEnv(jammer_type, channel_switching_cost) ob_space = env.observation_space ac_space = env.action_space s_size = ob_space.shape[0] a_size = ac_space.n max_env_steps = 100 TRAIN_Episodes = 25 env._max_episode_steps = max_env_steps epsilon = 1.0 epsilon_min = 0.01 epsilon_decay = 0.999 discount_rate = 0.95 lr = 0.001 batch_size = 32 DDQN_agent = DoubleDeepQNetwork(s_size, a_size, lr, discount_rate, epsilon, epsilon_min, epsilon_decay) rewards = [] epsilons = [] for e in range(TRAIN_Episodes): state = env.reset() state = np.reshape(state, [1, s_size]) tot_rewards = 0 for time in range(max_env_steps): action = DDQN_agent.action(state) next_state, reward, done, _ = env.step(action) next_state = np.reshape(next_state, [1, s_size]) tot_rewards += reward DDQN_agent.store(state, action, reward, next_state, done) state = next_state if len(DDQN_agent.memory) > batch_size: DDQN_agent.experience_replay(batch_size) if done or time == max_env_steps - 1: rewards.append(tot_rewards) epsilons.append(DDQN_agent.epsilon) status_text.text( f"Episode: {e + 1}/{TRAIN_Episodes}, Reward: {tot_rewards}, Epsilon: {DDQN_agent.epsilon:.3f}") progress_bar.progress((e + 1) / TRAIN_Episodes) break DDQN_agent.update_target_from_model() if len(rewards) > 10 and np.average(rewards[-10:]) >= max_env_steps - 0.10 * max_env_steps: break st.sidebar.success("DRL Training completed!") # Plotting rolling_average = np.convolve(rewards, np.ones(10) / 10, mode='valid') solved_threshold = max_env_steps - 0.10 * max_env_steps # Create a new Streamlit figure for the training graph fig, ax = plt.subplots(figsize=(8, 6)) ax.plot(rewards, label='Rewards') ax.plot(rolling_average, color='black', label='Rolling Average') ax.axhline(y=solved_threshold, color='r', linestyle='-', label='Solved Line') eps_graph = [100 * x for x in epsilons] ax.plot(eps_graph, color='g', linestyle='-', label='Epsilons') ax.set_xlabel('Episodes') ax.set_ylabel('Rewards') ax.set_title(f'Training Rewards - {jammer_type}, CSC: {channel_switching_cost}') ax.legend() insights = generate_insights_langchain(rewards, rolling_average, epsilons, solved_threshold) with st.container(): col1, col2 = st.columns(2) with col1: st.subheader("Training Graph") st.pyplot(fig) with col2: st.subheader("Graph Explanation") st.write(insights) plt.close(fig) # Close the figure to release resources return DDQN_agent def generate_insights_langchain(rewards, rolling_average, epsilons, solved_threshold): data_description = ( f"The graph represents training rewards over episodes. " f"The actual rewards range from {min(rewards):.2f} to {max(rewards):.2f} with an average of {np.mean(rewards):.2f}. " f"The rolling average values range from {min(rolling_average):.2f} to {max(rolling_average):.2f} with an average of {np.mean(rolling_average):.2f}. " f"The epsilon values range from {min(epsilons):.2f} to {max(epsilons):.2f} with an average exploration rate of {np.mean(epsilons):.2f}. " f"The solved threshold is set at {solved_threshold:.2f}." ) result = llm_chain.predict(data=data_description) return result