File size: 8,844 Bytes
2f0673d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

"""
Channel Attention and Spaitial Attention from    
Woo, S., Park, J., Lee, J.Y., & Kweon, I. CBAM: Convolutional Block Attention Module. ECCV2018.
"""


class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=8):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.sharedMLP = nn.Sequential(
            nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False),
            nn.ReLU(),
            nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False))
        self.sigmoid = nn.Sigmoid()

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight.data, gain=0.02)

    def forward(self, x):
        avgout = self.sharedMLP(self.avg_pool(x))
        maxout = self.sharedMLP(self.max_pool(x))
        return self.sigmoid(avgout + maxout)


class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
        assert kernel_size in (3, 7), "kernel size must be 3 or 7"
        padding = 3 if kernel_size == 7 else 1

        self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight.data, gain=0.02)

    def forward(self, x):
        avgout = torch.mean(x, dim=1, keepdim=True)
        maxout, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avgout, maxout], dim=1)
        x = self.conv(x)
        return self.sigmoid(x)


"""
The following modules are modified based on https://github.com/heykeetae/Self-Attention-GAN
"""


class Self_Attn(nn.Module):
    """ Self attention Layer"""

    def __init__(self, in_dim, out_dim=None, add=False, ratio=8):
        super(Self_Attn, self).__init__()
        self.chanel_in = in_dim
        self.add = add
        if out_dim is None:
            out_dim = in_dim
        self.out_dim = out_dim
        # self.activation = activation

        self.query_conv = nn.Conv2d(
            in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1)
        self.key_conv = nn.Conv2d(
            in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1)
        self.value_conv = nn.Conv2d(
            in_channels=in_dim, out_channels=out_dim, kernel_size=1)
        self.gamma = nn.Parameter(torch.zeros(1))

        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x):
        """
            inputs :
                x : input feature maps( B X C X W X H)
            returns :
                out : self attention value + input feature 
                attention: B X N X N (N is Width*Height)
        """
        m_batchsize, C, width, height = x.size()
        proj_query = self.query_conv(x).view(
            m_batchsize, -1, width*height).permute(0, 2, 1)  # B X C X(N)
        proj_key = self.key_conv(x).view(
            m_batchsize, -1, width*height)  # B X C x (*W*H)
        energy = torch.bmm(proj_query, proj_key)  # transpose check
        attention = self.softmax(energy)  # BX (N) X (N)
        proj_value = self.value_conv(x).view(
            m_batchsize, -1, width*height)  # B X C X N

        out = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out = out.view(m_batchsize, self.out_dim, width, height)

        if self.add:
            out = self.gamma*out + x
        else:
            out = self.gamma*out
        return out  # , attention


class CrossModalAttention(nn.Module):
    """ CMA attention Layer"""

    def __init__(self, in_dim, activation=None, ratio=8, cross_value=True):
        super(CrossModalAttention, self).__init__()
        self.chanel_in = in_dim
        self.activation = activation
        self.cross_value = cross_value

        self.query_conv = nn.Conv2d(
            in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1)
        self.key_conv = nn.Conv2d(
            in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1)
        self.value_conv = nn.Conv2d(
            in_channels=in_dim, out_channels=in_dim, kernel_size=1)
        self.gamma = nn.Parameter(torch.zeros(1))

        self.softmax = nn.Softmax(dim=-1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight.data, gain=0.02)

    def forward(self, x, y):
        """
            inputs :
                x : input feature maps( B X C X W X H)
            returns :
                out : self attention value + input feature 
                attention: B X N X N (N is Width*Height)
        """
        B, C, H, W = x.size()

        proj_query = self.query_conv(x).view(
            B, -1, H*W).permute(0, 2, 1)  # B , HW, C
        proj_key = self.key_conv(y).view(
            B, -1, H*W)  # B X C x (*W*H)
        energy = torch.bmm(proj_query, proj_key)  # B, HW, HW
        attention = self.softmax(energy)  # BX (N) X (N)
        if self.cross_value:
            proj_value = self.value_conv(y).view(
                B, -1, H*W)  # B , C , HW
        else:
            proj_value = self.value_conv(x).view(
                B, -1, H*W)  # B , C , HW

        out = torch.bmm(proj_value, attention.permute(0, 2, 1))
        out = out.view(B, C, H, W)

        out = self.gamma*out + x

        if self.activation is not None:
            out = self.activation(out)

        return out  # , attention


class DualCrossModalAttention(nn.Module):
    """ Dual CMA attention Layer"""

    def __init__(self, in_dim, activation=None, size=16, ratio=8, ret_att=False):
        super(DualCrossModalAttention, self).__init__()
        self.chanel_in = in_dim
        self.activation = activation
        self.ret_att = ret_att

        # query conv
        self.key_conv1 = nn.Conv2d(
            in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1)
        self.key_conv2 = nn.Conv2d(
            in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1)
        self.key_conv_share = nn.Conv2d(
            in_channels=in_dim//ratio, out_channels=in_dim//ratio, kernel_size=1)

        self.linear1 = nn.Linear(size*size, size*size)
        self.linear2 = nn.Linear(size*size, size*size)

        # separated value conv
        self.value_conv1 = nn.Conv2d(
            in_channels=in_dim, out_channels=in_dim, kernel_size=1)
        self.gamma1 = nn.Parameter(torch.zeros(1))

        self.value_conv2 = nn.Conv2d(
            in_channels=in_dim, out_channels=in_dim, kernel_size=1)
        self.gamma2 = nn.Parameter(torch.zeros(1))

        self.softmax = nn.Softmax(dim=-1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight.data, gain=0.02)
            if isinstance(m, nn.Linear):
                nn.init.xavier_normal_(m.weight.data, gain=0.02)

    def forward(self, x, y):
        """
            inputs :
                x : input feature maps( B X C X W X H)
            returns :
                out : self attention value + input feature 
                attention: B X N X N (N is Width*Height)
        """
        B, C, H, W = x.size()

        def _get_att(a, b):
            proj_key1 = self.key_conv_share(self.key_conv1(a)).view(
                B, -1, H*W).permute(0, 2, 1)  # B, HW, C
            proj_key2 = self.key_conv_share(self.key_conv2(b)).view(
                B, -1, H*W)  # B X C x (*W*H)
            energy = torch.bmm(proj_key1, proj_key2)  # B, HW, HW

            attention1 = self.softmax(self.linear1(energy))
            attention2 = self.softmax(self.linear2(
                energy.permute(0, 2, 1)))  # BX (N) X (N)

            return attention1, attention2

        att_y_on_x, att_x_on_y = _get_att(x, y)
        proj_value_y_on_x = self.value_conv2(y).view(
            B, -1, H*W)  # B, C, HW
        out_y_on_x = torch.bmm(proj_value_y_on_x, att_y_on_x.permute(0, 2, 1))
        out_y_on_x = out_y_on_x.view(B, C, H, W)
        out_x = self.gamma1*out_y_on_x + x

        proj_value_x_on_y = self.value_conv1(x).view(
            B, -1, H*W)  # B , C , HW
        out_x_on_y = torch.bmm(proj_value_x_on_y, att_x_on_y.permute(0, 2, 1))
        out_x_on_y = out_x_on_y.view(B, C, H, W)
        out_y = self.gamma2*out_x_on_y + y

        if self.ret_att:
            return out_x, out_y, att_y_on_x, att_x_on_y

        return out_x, out_y  # , attention


if __name__ == "__main__":
    x = torch.rand(10, 768, 16, 16)
    y = torch.rand(10, 768, 16, 16)
    dcma = DualCrossModalAttention(768, ret_att=True)
    out_x, out_y, att_y_on_x, att_x_on_y = dcma(x, y)
    print(out_y.size())
    print(att_x_on_y.size())