Spaces:
Build error
Build error
File size: 7,837 Bytes
04dca3b e71c28e 26d4625 e71c28e 04dca3b 26d4625 04dca3b 26d4625 e71c28e 04dca3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# coding: utf-8
import os
import argparse
from os.path import join
import cv2
import dlib
import torch
import torch.nn as nn
from PIL import Image as pil_image
from tqdm import tqdm
from model_core import Two_Stream_Net
from torchvision import transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
map_location=torch.device('cpu')
xception_default_data_transforms_256 = {
'train': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5]*3, [0.5]*3)
]),
'val': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5] * 3, [0.5] * 3)
]),
'test': transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5] * 3, [0.5] * 3)
]),
}
def get_boundingbox(face, width, height, scale=1.3, minsize=None):
"""
Expects a dlib face to generate a quadratic bounding box.
:param face: dlib face class
:param width: frame width
:param height: frame height
:param scale: bounding box size multiplier to get a bigger face region
:param minsize: set minimum bounding box size
:return: x, y, bounding_box_size in opencv form
"""
x1 = face.left()
y1 = face.top()
x2 = face.right()
y2 = face.bottom()
size_bb = int(max(x2 - x1, y2 - y1) * scale)
if minsize:
if size_bb < minsize:
size_bb = minsize
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
# Check for out of bounds, x-y top left corner
x1 = max(int(center_x - size_bb // 2), 0)
y1 = max(int(center_y - size_bb // 2), 0)
# Check for too big bb size for given x, y
size_bb = min(width - x1, size_bb)
size_bb = min(height - y1, size_bb)
return x1, y1, size_bb
def preprocess_image(image, cuda=True):
"""
Preprocesses the image such that it can be fed into our network.
During this process we envoke PIL to cast it into a PIL image.
:param image: numpy image in opencv form (i.e., BGR and of shape
:return: pytorch tensor of shape [1, 3, image_size, image_size], not
necessarily casted to cuda
"""
# Revert from BGR
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Preprocess using the preprocessing function used during training and
# casting it to PIL image
preprocess = xception_default_data_transforms_256['test']
preprocessed_image = preprocess(pil_image.fromarray(image))
# Add first dimension as the network expects a batch
preprocessed_image = preprocessed_image.unsqueeze(0)
if cuda:
preprocessed_image = preprocessed_image.cuda()
return preprocessed_image
def predict_with_model(image, model, post_function=nn.Softmax(dim=1),
cuda=True):
"""
Predicts the label of an input image. Preprocesses the input image and
casts it to cuda if required
:param image: numpy image
:param model: torch model with linear layer at the end
:param post_function: e.g., softmax
:param cuda: enables cuda, must be the same parameter as the model
:return: prediction (1 = fake, 0 = real)
"""
# Preprocess
preprocessed_image = preprocess_image(image, cuda).cuda()
# print(preprocessed_image.shape)
# Model prediction
output = model(preprocessed_image)
# print(output)
# output = post_function(output[0])
# Cast to desired
_, prediction = torch.max(output[0], 1) # argmax
prediction = float(prediction.cpu().numpy())
# print(prediction)
return int(prediction), output
def test_full_image_network(video_path, model_path, output_path,
start_frame=0, end_frame=None, cuda=False):
"""
Reads a video and evaluates a subset of frames with the a detection network
that takes in a full frame. Outputs are only given if a face is present
and the face is highlighted using dlib.
:param video_path: path to video file
:param model_path: path to model file (should expect the full sized image)
:param output_path: path where the output video is stored
:param start_frame: first frame to evaluate
:param end_frame: last frame to evaluate
:param cuda: enable cuda
:return:
"""
print('Starting: {}'.format(video_path))
if not os.path.exists(output_path):
os.mkdir(output_path)
# Read and write
reader = cv2.VideoCapture(video_path)
# video_fn = video_path.split('/')[-1].split('.')[0]+'.avi'
video_fn = 'output_video.avi'
os.makedirs(output_path, exist_ok=True)
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
fps = reader.get(cv2.CAP_PROP_FPS)
num_frames = int(reader.get(cv2.CAP_PROP_FRAME_COUNT))
writer = None
# Face detector
face_detector = dlib.get_frontal_face_detector()
# Load model
# model, *_ = model_selection(modelname='xception', num_out_classes=2)
model = Two_Stream_Net()
model.load_state_dict(torch.load(model_path,map_location))
model = model.to(device)
model.eval()
if cuda:
model = model.cuda()
# Text variables
font_face = cv2.FONT_HERSHEY_SIMPLEX
thickness = 2
font_scale = 1
frame_num = 0
assert start_frame < num_frames - 1
end_frame = end_frame if end_frame else num_frames
pbar = tqdm(total=end_frame-start_frame)
while reader.isOpened():
_, image = reader.read()
if image is None:
break
frame_num += 1
if frame_num < start_frame:
continue
pbar.update(1)
# Image size
height, width = image.shape[:2]
# Init output writer
if writer is None:
# writer = cv2.VideoWriter(join(output_path, video_fn), fourcc, fps,
# (height, width)[::-1])
writer = cv2.VideoWriter(video_fn, fourcc, fps,
(height, width)[::-1])
# 2. Detect with dlib
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_detector(gray, 1)
if len(faces):
# For now only take biggest face
face = faces[0]
# --- Prediction ---------------------------------------------------
# Face crop with dlib and bounding box scale enlargement
x, y, size = get_boundingbox(face, width, height)
cropped_face = image[y:y+size, x:x+size]
# Actual prediction using our model
prediction, output = predict_with_model(cropped_face, model,
cuda=cuda)
# ------------------------------------------------------------------
# Text and bb
x = face.left()
y = face.top()
w = face.right() - x
h = face.bottom() - y
label = 'fake' if prediction == 0 else 'real'
color = (0, 255, 0) if prediction == 1 else (0, 0, 255)
output_list = ['{0:.2f}'.format(float(x)) for x in
output[0].detach().cpu().numpy()[0]]
cv2.putText(image, str(output_list)+'=>'+label, (x, y+h+30),
font_face, font_scale,
color, thickness, 2)
# draw box over face
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
if frame_num >= end_frame:
break
# Show
# cv2.imshow('test', image)
# cv2.waitKey(33) # About 30 fps
writer.write(image)
pbar.close()
if writer is not None:
writer.release()
print('Finished! Output saved under {}'.format(output_path))
else:
print('Input video file was empty')
return 'output_video.avi'
|