File size: 11,448 Bytes
c794a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c52661
c794a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from tqdm import tqdm
import numpy as np
import dlib
from collections import OrderedDict
import cv2

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
FACIAL_LANDMARKS_68_IDXS = OrderedDict([
    ("mouth", (48, 68)),
    ("inner_mouth", (60, 68)),
    ("right_eyebrow", (17, 22)),
    ("left_eyebrow", (22, 27)),
    ("right_eye", (36, 42)),
    ("left_eye", (42, 48)),
    ("nose", (27, 36)),
    ("jaw", (0, 17))
])


def shape_to_face(shape, width, height, scale=1.2):
    """

    Recalculate the face bounding box based on coarse landmark location(shape)

    :param

    shape: landmark locations

    scale: the scale parameter of face, to enlarge the bounding box

    :return:

    face_new: new bounding box of face (1*4 list [x1, y1, x2, y2])

    # face_center: the center coordinate of face (1*2 list [x_c, y_c])

    face_size: the face is rectangular( width = height = size)(int)

    """
    x_min, y_min = np.min(shape, axis=0)
    x_max, y_max = np.max(shape, axis=0)

    x_center = (x_min + x_max) // 2
    y_center = (y_min + y_max) // 2

    face_size = int(max(x_max - x_min, y_max - y_min) * scale)
    # Enforce it to be even
    # Thus the real whole bounding box size will be an odd
    # But after cropping the face size will become even and
    # keep same to the face_size parameter.
    face_size = face_size // 2 * 2

    x1 = max(x_center - face_size // 2, 0)
    y1 = max(y_center - face_size // 2, 0)

    face_size = min(width - x1, face_size)
    face_size = min(height - y1, face_size)

    x2 = x1 + face_size
    y2 = y1 + face_size

    face_new = [int(x1), int(y1), int(x2), int(y2)]
    return face_new, face_size


def predict_single_frame(frame):
    """

    :param frame: A full frame of video

    :return:

    face_num: the number of face (just to verify if successfully detect a face)

    shape: landmark locations

    """
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = detector(gray, 0)
    if len(faces) < 1:
        return 0, None
    face = faces[0]

    landmarks = predictor(frame, face)
    face_landmark_list = [(p.x, p.y) for p in landmarks.parts()]
    shape = np.array(face_landmark_list)

    return 1, shape


def landmark_align(shape):
    desiredLeftEye = (0.35, 0.25)
    desiredFaceWidth = 2
    desiredFaceHeight = 2
    (lStart, lEnd) = FACIAL_LANDMARKS_68_IDXS["left_eye"]
    (rStart, rEnd) = FACIAL_LANDMARKS_68_IDXS["right_eye"]

    leftEyePts = shape[lStart:lEnd]
    rightEyePts = shape[rStart:rEnd]

    # compute the center of mass for each eye
    leftEyeCenter = leftEyePts.mean(axis=0)  # .astype("int")
    rightEyeCenter = rightEyePts.mean(axis=0)  # .astype("int")
    # compute the angle between the eye centroids
    dY = rightEyeCenter[1] - leftEyeCenter[1]
    dX = rightEyeCenter[0] - leftEyeCenter[0]
    angle = np.degrees(np.arctan2(dY, dX))  # - 180

    # compute the desired right eye x-coordinate based on the
    # desired x-coordinate of the left eye
    desiredRightEyeX = 1.0 - desiredLeftEye[0]

    # determine the scale of the new resulting image by taking
    # the ratio of the distance between eyes in the *current*
    # image to the ratio of distance between eyes in the
    # *desired* image
    dist = np.sqrt((dX ** 2) + (dY ** 2))
    desiredDist = (desiredRightEyeX - desiredLeftEye[0])
    desiredDist *= desiredFaceWidth
    scale = desiredDist / dist

    # compute center (x, y)-coordinates (i.e., the median point)
    # between the two eyes in the input image
    eyesCenter = ((leftEyeCenter[0] + rightEyeCenter[0]) // 2,
                  (leftEyeCenter[1] + rightEyeCenter[1]) // 2)

    # grab the rotation matrix for rotating and scaling the face
    M = cv2.getRotationMatrix2D(eyesCenter, angle, scale)

    # update the translation component of the matrix
    tX = 0  # desiredFaceWidth * 0.5
    tY = desiredFaceHeight * desiredLeftEye[1]
    M[0, 2] += (tX - eyesCenter[0])
    M[1, 2] += (tY - eyesCenter[1])

    n, d = shape.shape
    temp = np.zeros((n, d + 1), dtype="int")
    temp[:, 0:2] = shape
    temp[:, 2] = 1
    aligned_landmarks = np.matmul(M, temp.T)
    return aligned_landmarks.T  # .astype("int"))


def check_and_merge(location, forward, feedback, P_predict, status_fw=None, status_fb=None):
    num_pts = 68
    check = [True] * num_pts

    target = location[1]
    forward_predict = forward[1]

    # To ensure the robustness through feedback-check
    forward_base = forward[0]  # Also equal to location[0]
    feedback_predict = feedback[0]
    feedback_diff = feedback_predict - forward_base
    feedback_dist = np.linalg.norm(feedback_diff, axis=1, keepdims=True)

    # For Kalman Filtering
    detect_diff = location[1] - location[0]
    detect_dist = np.linalg.norm(detect_diff, axis=1, keepdims=True)
    predict_diff = forward[1] - forward[0]
    predict_dist = np.linalg.norm(predict_diff, axis=1, keepdims=True)
    predict_dist[np.where(predict_dist == 0)] = 1  # Avoid nan
    P_detect = (detect_dist / predict_dist).reshape(num_pts)

    for ipt in range(num_pts):
        if feedback_dist[ipt] > 2:  # When use float
            check[ipt] = False

    if status_fw is not None and np.sum(status_fw) != num_pts:
        for ipt in range(num_pts):
            if status_fw[ipt][0] == 0:
                check[ipt] = False
    if status_fw is not None and np.sum(status_fb) != num_pts:
        for ipt in range(num_pts):
            if status_fb[ipt][0] == 0:
                check[ipt] = False
    location_merge = target.copy()
    # Merge the results:
    """

    Use Kalman Filter to combine the calculate result and detect result.

    """

    Q = 0.3  # Process variance

    for ipt in range(num_pts):
        if check[ipt]:
            # Kalman parameter
            P_predict[ipt] += Q
            K = P_predict[ipt] / (P_predict[ipt] + P_detect[ipt])
            location_merge[ipt] = forward_predict[ipt] + K * (target[ipt] - forward_predict[ipt])
            # Update the P_predict by the current K
            P_predict[ipt] = (1 - K) * P_predict[ipt]
    return location_merge, check, P_predict


def detect_frames_track(frames):
    frames_num = len(frames)
    assert frames_num != 0
    frame_height, frame_width = frames[0].shape[:2]
    """

    Pre-process:

    To detect the original results,

    and normalize each face to a certain width, 

    also its corresponding landmarks locations and 

    scale parameter.

    """
    face_size_normalized = 400
    faces = []
    locations = []
    shapes_origin = []
    shapes_para = []  # Use to recover the shape in whole frame. ([x1, y1, scale_shape])
    face_size = 0
    skipped = 0

    """

    Use single frame to detect face on Dlib (CPU)

    """
    # ----------------------------------------------------------------------------#

    print("Detecting:")
    for i in tqdm(range(frames_num)):
        frame = frames[i]
        face_num, shape = predict_single_frame(frame)

        if face_num == 0:
            if len(shapes_origin) == 0:
                skipped += 1
                # print("Skipped", skipped, "Frame_num", frames_num)
                continue
            shape = shapes_origin[i - 1 - skipped]

        face, face_size = shape_to_face(shape, frame_width, frame_height, 1.2)
        faceFrame = frame[face[1]: face[3],
                    face[0]:face[2]]
        if face_size < face_size_normalized:
            inter_para = cv2.INTER_CUBIC
        else:
            inter_para = cv2.INTER_AREA
        face_norm = cv2.resize(faceFrame, (face_size_normalized, face_size_normalized), interpolation=inter_para)
        scale_shape = face_size_normalized / face_size
        shape_norm = np.rint((shape - np.array([face[0], face[1]])) * scale_shape).astype(int)
        faces.append(face_norm)
        shapes_para.append([face[0], face[1], scale_shape])
        shapes_origin.append(shape)
        locations.append(shape_norm)

    """

    Calibration module.

    """
    segment_length = 2
    locations_sum = len(locations)
    if locations_sum == 0:
        return []
    locations_track = [locations[0]]
    num_pts = 68
    P_predict = np.array([0] * num_pts).reshape(num_pts).astype(float)
    print("Tracking")
    for i in tqdm(range(locations_sum - 1)):
        faces_seg = faces[i:i + segment_length]
        locations_seg = locations[i:i + segment_length]

        # ----------------------------------------------------------------------#
        """

        Numpy Version (DEPRECATED)

        """

        # locations_track_start = [locations_track[i]]
        # forward_pts, feedback_pts = track_bidirectional(faces_seg, locations_track_start)
        #
        # forward_pts = np.rint(forward_pts).astype(int)
        # feedback_pts = np.rint(feedback_pts).astype(int)
        # merge_pt, check, P_predict = check_and_merge(locations_seg, forward_pts, feedback_pts, P_predict)

        # ----------------------------------------------------------------------#
        """

        OpenCV Version

        """

        lk_params = dict(winSize=(15, 15),
                         maxLevel=3,
                         criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
        # Use the tracked current location as input. Also use the next frame's predicted location for
        # auxiliary initialization.

        start_pt = locations_track[i].astype(np.float32)
        target_pt = locations_seg[1].astype(np.float32)

        forward_pt, status_fw, err_fw = cv2.calcOpticalFlowPyrLK(faces_seg[0], faces_seg[1],
                                                                 start_pt, target_pt, **lk_params,
                                                                 flags=cv2.OPTFLOW_USE_INITIAL_FLOW)
        feedback_pt, status_fb, err_fb = cv2.calcOpticalFlowPyrLK(faces_seg[1], faces_seg[0],
                                                                  forward_pt, start_pt, **lk_params,
                                                                  flags=cv2.OPTFLOW_USE_INITIAL_FLOW)

        forward_pts = [locations_track[i].copy(), forward_pt]
        feedback_pts = [feedback_pt, forward_pt.copy()]

        forward_pts = np.rint(forward_pts).astype(int)
        feedback_pts = np.rint(feedback_pts).astype(int)

        merge_pt, check, P_predict = check_and_merge(locations_seg, forward_pts, feedback_pts, P_predict, status_fw,
                                                     status_fb)

        # ----------------------------------------------------------------------#

        locations_track.append(merge_pt)

    """

    If us visualization, write the results to the visualize output folder.

    """
    if locations_sum != frames_num:
        print("INFO: Landmarks detection failed in some frames. Therefore we disable the "
              "visualization for this video. It will be optimized in future version.")

    aligned_landmarks = []
    for i in locations_track:
        shape = landmark_align(i)
        shape = shape.ravel()
        shape = shape.tolist()
        aligned_landmarks.append(shape)

    return aligned_landmarks