Spaces:
Build error
Build error
File size: 11,448 Bytes
c794a89 2c52661 c794a89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
from tqdm import tqdm
import numpy as np
import dlib
from collections import OrderedDict
import cv2
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
FACIAL_LANDMARKS_68_IDXS = OrderedDict([
("mouth", (48, 68)),
("inner_mouth", (60, 68)),
("right_eyebrow", (17, 22)),
("left_eyebrow", (22, 27)),
("right_eye", (36, 42)),
("left_eye", (42, 48)),
("nose", (27, 36)),
("jaw", (0, 17))
])
def shape_to_face(shape, width, height, scale=1.2):
"""
Recalculate the face bounding box based on coarse landmark location(shape)
:param
shape: landmark locations
scale: the scale parameter of face, to enlarge the bounding box
:return:
face_new: new bounding box of face (1*4 list [x1, y1, x2, y2])
# face_center: the center coordinate of face (1*2 list [x_c, y_c])
face_size: the face is rectangular( width = height = size)(int)
"""
x_min, y_min = np.min(shape, axis=0)
x_max, y_max = np.max(shape, axis=0)
x_center = (x_min + x_max) // 2
y_center = (y_min + y_max) // 2
face_size = int(max(x_max - x_min, y_max - y_min) * scale)
# Enforce it to be even
# Thus the real whole bounding box size will be an odd
# But after cropping the face size will become even and
# keep same to the face_size parameter.
face_size = face_size // 2 * 2
x1 = max(x_center - face_size // 2, 0)
y1 = max(y_center - face_size // 2, 0)
face_size = min(width - x1, face_size)
face_size = min(height - y1, face_size)
x2 = x1 + face_size
y2 = y1 + face_size
face_new = [int(x1), int(y1), int(x2), int(y2)]
return face_new, face_size
def predict_single_frame(frame):
"""
:param frame: A full frame of video
:return:
face_num: the number of face (just to verify if successfully detect a face)
shape: landmark locations
"""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = detector(gray, 0)
if len(faces) < 1:
return 0, None
face = faces[0]
landmarks = predictor(frame, face)
face_landmark_list = [(p.x, p.y) for p in landmarks.parts()]
shape = np.array(face_landmark_list)
return 1, shape
def landmark_align(shape):
desiredLeftEye = (0.35, 0.25)
desiredFaceWidth = 2
desiredFaceHeight = 2
(lStart, lEnd) = FACIAL_LANDMARKS_68_IDXS["left_eye"]
(rStart, rEnd) = FACIAL_LANDMARKS_68_IDXS["right_eye"]
leftEyePts = shape[lStart:lEnd]
rightEyePts = shape[rStart:rEnd]
# compute the center of mass for each eye
leftEyeCenter = leftEyePts.mean(axis=0) # .astype("int")
rightEyeCenter = rightEyePts.mean(axis=0) # .astype("int")
# compute the angle between the eye centroids
dY = rightEyeCenter[1] - leftEyeCenter[1]
dX = rightEyeCenter[0] - leftEyeCenter[0]
angle = np.degrees(np.arctan2(dY, dX)) # - 180
# compute the desired right eye x-coordinate based on the
# desired x-coordinate of the left eye
desiredRightEyeX = 1.0 - desiredLeftEye[0]
# determine the scale of the new resulting image by taking
# the ratio of the distance between eyes in the *current*
# image to the ratio of distance between eyes in the
# *desired* image
dist = np.sqrt((dX ** 2) + (dY ** 2))
desiredDist = (desiredRightEyeX - desiredLeftEye[0])
desiredDist *= desiredFaceWidth
scale = desiredDist / dist
# compute center (x, y)-coordinates (i.e., the median point)
# between the two eyes in the input image
eyesCenter = ((leftEyeCenter[0] + rightEyeCenter[0]) // 2,
(leftEyeCenter[1] + rightEyeCenter[1]) // 2)
# grab the rotation matrix for rotating and scaling the face
M = cv2.getRotationMatrix2D(eyesCenter, angle, scale)
# update the translation component of the matrix
tX = 0 # desiredFaceWidth * 0.5
tY = desiredFaceHeight * desiredLeftEye[1]
M[0, 2] += (tX - eyesCenter[0])
M[1, 2] += (tY - eyesCenter[1])
n, d = shape.shape
temp = np.zeros((n, d + 1), dtype="int")
temp[:, 0:2] = shape
temp[:, 2] = 1
aligned_landmarks = np.matmul(M, temp.T)
return aligned_landmarks.T # .astype("int"))
def check_and_merge(location, forward, feedback, P_predict, status_fw=None, status_fb=None):
num_pts = 68
check = [True] * num_pts
target = location[1]
forward_predict = forward[1]
# To ensure the robustness through feedback-check
forward_base = forward[0] # Also equal to location[0]
feedback_predict = feedback[0]
feedback_diff = feedback_predict - forward_base
feedback_dist = np.linalg.norm(feedback_diff, axis=1, keepdims=True)
# For Kalman Filtering
detect_diff = location[1] - location[0]
detect_dist = np.linalg.norm(detect_diff, axis=1, keepdims=True)
predict_diff = forward[1] - forward[0]
predict_dist = np.linalg.norm(predict_diff, axis=1, keepdims=True)
predict_dist[np.where(predict_dist == 0)] = 1 # Avoid nan
P_detect = (detect_dist / predict_dist).reshape(num_pts)
for ipt in range(num_pts):
if feedback_dist[ipt] > 2: # When use float
check[ipt] = False
if status_fw is not None and np.sum(status_fw) != num_pts:
for ipt in range(num_pts):
if status_fw[ipt][0] == 0:
check[ipt] = False
if status_fw is not None and np.sum(status_fb) != num_pts:
for ipt in range(num_pts):
if status_fb[ipt][0] == 0:
check[ipt] = False
location_merge = target.copy()
# Merge the results:
"""
Use Kalman Filter to combine the calculate result and detect result.
"""
Q = 0.3 # Process variance
for ipt in range(num_pts):
if check[ipt]:
# Kalman parameter
P_predict[ipt] += Q
K = P_predict[ipt] / (P_predict[ipt] + P_detect[ipt])
location_merge[ipt] = forward_predict[ipt] + K * (target[ipt] - forward_predict[ipt])
# Update the P_predict by the current K
P_predict[ipt] = (1 - K) * P_predict[ipt]
return location_merge, check, P_predict
def detect_frames_track(frames):
frames_num = len(frames)
assert frames_num != 0
frame_height, frame_width = frames[0].shape[:2]
"""
Pre-process:
To detect the original results,
and normalize each face to a certain width,
also its corresponding landmarks locations and
scale parameter.
"""
face_size_normalized = 400
faces = []
locations = []
shapes_origin = []
shapes_para = [] # Use to recover the shape in whole frame. ([x1, y1, scale_shape])
face_size = 0
skipped = 0
"""
Use single frame to detect face on Dlib (CPU)
"""
# ----------------------------------------------------------------------------#
print("Detecting:")
for i in tqdm(range(frames_num)):
frame = frames[i]
face_num, shape = predict_single_frame(frame)
if face_num == 0:
if len(shapes_origin) == 0:
skipped += 1
# print("Skipped", skipped, "Frame_num", frames_num)
continue
shape = shapes_origin[i - 1 - skipped]
face, face_size = shape_to_face(shape, frame_width, frame_height, 1.2)
faceFrame = frame[face[1]: face[3],
face[0]:face[2]]
if face_size < face_size_normalized:
inter_para = cv2.INTER_CUBIC
else:
inter_para = cv2.INTER_AREA
face_norm = cv2.resize(faceFrame, (face_size_normalized, face_size_normalized), interpolation=inter_para)
scale_shape = face_size_normalized / face_size
shape_norm = np.rint((shape - np.array([face[0], face[1]])) * scale_shape).astype(int)
faces.append(face_norm)
shapes_para.append([face[0], face[1], scale_shape])
shapes_origin.append(shape)
locations.append(shape_norm)
"""
Calibration module.
"""
segment_length = 2
locations_sum = len(locations)
if locations_sum == 0:
return []
locations_track = [locations[0]]
num_pts = 68
P_predict = np.array([0] * num_pts).reshape(num_pts).astype(float)
print("Tracking")
for i in tqdm(range(locations_sum - 1)):
faces_seg = faces[i:i + segment_length]
locations_seg = locations[i:i + segment_length]
# ----------------------------------------------------------------------#
"""
Numpy Version (DEPRECATED)
"""
# locations_track_start = [locations_track[i]]
# forward_pts, feedback_pts = track_bidirectional(faces_seg, locations_track_start)
#
# forward_pts = np.rint(forward_pts).astype(int)
# feedback_pts = np.rint(feedback_pts).astype(int)
# merge_pt, check, P_predict = check_and_merge(locations_seg, forward_pts, feedback_pts, P_predict)
# ----------------------------------------------------------------------#
"""
OpenCV Version
"""
lk_params = dict(winSize=(15, 15),
maxLevel=3,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# Use the tracked current location as input. Also use the next frame's predicted location for
# auxiliary initialization.
start_pt = locations_track[i].astype(np.float32)
target_pt = locations_seg[1].astype(np.float32)
forward_pt, status_fw, err_fw = cv2.calcOpticalFlowPyrLK(faces_seg[0], faces_seg[1],
start_pt, target_pt, **lk_params,
flags=cv2.OPTFLOW_USE_INITIAL_FLOW)
feedback_pt, status_fb, err_fb = cv2.calcOpticalFlowPyrLK(faces_seg[1], faces_seg[0],
forward_pt, start_pt, **lk_params,
flags=cv2.OPTFLOW_USE_INITIAL_FLOW)
forward_pts = [locations_track[i].copy(), forward_pt]
feedback_pts = [feedback_pt, forward_pt.copy()]
forward_pts = np.rint(forward_pts).astype(int)
feedback_pts = np.rint(feedback_pts).astype(int)
merge_pt, check, P_predict = check_and_merge(locations_seg, forward_pts, feedback_pts, P_predict, status_fw,
status_fb)
# ----------------------------------------------------------------------#
locations_track.append(merge_pt)
"""
If us visualization, write the results to the visualize output folder.
"""
if locations_sum != frames_num:
print("INFO: Landmarks detection failed in some frames. Therefore we disable the "
"visualization for this video. It will be optimized in future version.")
aligned_landmarks = []
for i in locations_track:
shape = landmark_align(i)
shape = shape.ravel()
shape = shape.tolist()
aligned_landmarks.append(shape)
return aligned_landmarks
|