File size: 4,550 Bytes
e1bfa3e
 
 
 
e72a8c5
 
 
e1bfa3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import torch.nn as nn
import torch.nn.functional as F

from attention import ChannelAttention, SpatialAttention, DualCrossModalAttention
from srm_conv import SRMConv2d_simple, SRMConv2d_Separate
from xception import TransferModel


class SRMPixelAttention(nn.Module):
    def __init__(self, in_channels):
        super(SRMPixelAttention, self).__init__()
        # self.srm = SRMConv2d_simple()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, 32, 3, 2, 0, bias=False),
            nn.BatchNorm2d(32),
            nn.ReLU(inplace=True),
            nn.Conv2d(32, 64, 3, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
        )
        
        self.pa = SpatialAttention()

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, a=1)
                if not m.bias is None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, x_srm):
        # x_srm = self.srm(x)
        fea = self.conv(x_srm)        
        att_map = self.pa(fea)
        
        return att_map


class FeatureFusionModule(nn.Module):
    def __init__(self, in_chan=2048*2, out_chan=2048, *args, **kwargs):
        super(FeatureFusionModule, self).__init__()
        self.convblk = nn.Sequential(
            nn.Conv2d(in_chan, out_chan, 1, 1, 0, bias=False),
            nn.BatchNorm2d(out_chan),
            nn.ReLU()
        )
        self.ca = ChannelAttention(out_chan, ratio=16)
        self.init_weight()

    def forward(self, x, y):
        fuse_fea = self.convblk(torch.cat((x, y), dim=1))
        fuse_fea = fuse_fea + fuse_fea * self.ca(fuse_fea)
        return fuse_fea

    def init_weight(self):
        for ly in self.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)
                if not ly.bias is None:
                    nn.init.constant_(ly.bias, 0)


class Two_Stream_Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.xception_rgb = TransferModel(
            'xception', dropout=0.5, inc=3, return_fea=True)
        self.xception_srm = TransferModel(
            'xception', dropout=0.5, inc=3, return_fea=True)

        self.srm_conv0 = SRMConv2d_simple(inc=3)
        self.srm_conv1 = SRMConv2d_Separate(32, 32)
        self.srm_conv2 = SRMConv2d_Separate(64, 64)
        self.relu = nn.ReLU(inplace=True)

        self.att_map = None
        self.srm_sa = SRMPixelAttention(3)
        self.srm_sa_post = nn.Sequential(
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True)
        )

        self.dual_cma0 = DualCrossModalAttention(in_dim=728, ret_att=False)
        self.dual_cma1 = DualCrossModalAttention(in_dim=728, ret_att=False)

        self.fusion = FeatureFusionModule()

        self.att_dic = {}

    def features(self, x):
        srm = self.srm_conv0(x)

        x = self.xception_rgb.model.fea_part1_0(x)
        y = self.xception_srm.model.fea_part1_0(srm) \
            + self.srm_conv1(x)
        y = self.relu(y)

        x = self.xception_rgb.model.fea_part1_1(x)
        y = self.xception_srm.model.fea_part1_1(y) \
            + self.srm_conv2(x)
        y = self.relu(y)

        # srm guided spatial attention
        self.att_map = self.srm_sa(srm)
        x = x * self.att_map + x
        x = self.srm_sa_post(x)

        x = self.xception_rgb.model.fea_part2(x)
        y = self.xception_srm.model.fea_part2(y)

        x, y = self.dual_cma0(x, y)


        x = self.xception_rgb.model.fea_part3(x)        
        y = self.xception_srm.model.fea_part3(y)
 

        x, y = self.dual_cma1(x, y)

        x = self.xception_rgb.model.fea_part4(x)
        y = self.xception_srm.model.fea_part4(y)

        x = self.xception_rgb.model.fea_part5(x)
        y = self.xception_srm.model.fea_part5(y)

        fea = self.fusion(x, y)
                

        return fea

    def classifier(self, fea):
        out, fea = self.xception_rgb.classifier(fea)
        return out, fea

    def forward(self, x):
        '''
        x: original rgb
        
        Return:
        out: (B, 2) the output for loss computing
        fea: (B, 1024) the flattened features before the last FC
        att_map: srm spatial attention map
        '''
        out, fea = self.classifier(self.features(x))

        return out, fea, self.att_map
    
if __name__ == '__main__':
    model = Two_Stream_Net()
    dummy = torch.rand((1,3,256,256))
    out = model(dummy)
    print(model)