Spaces:
Build error
Build error
File size: 4,550 Bytes
e1bfa3e e72a8c5 e1bfa3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from attention import ChannelAttention, SpatialAttention, DualCrossModalAttention
from srm_conv import SRMConv2d_simple, SRMConv2d_Separate
from xception import TransferModel
class SRMPixelAttention(nn.Module):
def __init__(self, in_channels):
super(SRMPixelAttention, self).__init__()
# self.srm = SRMConv2d_simple()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, 32, 3, 2, 0, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, 3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.pa = SpatialAttention()
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, a=1)
if not m.bias is None:
nn.init.constant_(m.bias, 0)
def forward(self, x_srm):
# x_srm = self.srm(x)
fea = self.conv(x_srm)
att_map = self.pa(fea)
return att_map
class FeatureFusionModule(nn.Module):
def __init__(self, in_chan=2048*2, out_chan=2048, *args, **kwargs):
super(FeatureFusionModule, self).__init__()
self.convblk = nn.Sequential(
nn.Conv2d(in_chan, out_chan, 1, 1, 0, bias=False),
nn.BatchNorm2d(out_chan),
nn.ReLU()
)
self.ca = ChannelAttention(out_chan, ratio=16)
self.init_weight()
def forward(self, x, y):
fuse_fea = self.convblk(torch.cat((x, y), dim=1))
fuse_fea = fuse_fea + fuse_fea * self.ca(fuse_fea)
return fuse_fea
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None:
nn.init.constant_(ly.bias, 0)
class Two_Stream_Net(nn.Module):
def __init__(self):
super().__init__()
self.xception_rgb = TransferModel(
'xception', dropout=0.5, inc=3, return_fea=True)
self.xception_srm = TransferModel(
'xception', dropout=0.5, inc=3, return_fea=True)
self.srm_conv0 = SRMConv2d_simple(inc=3)
self.srm_conv1 = SRMConv2d_Separate(32, 32)
self.srm_conv2 = SRMConv2d_Separate(64, 64)
self.relu = nn.ReLU(inplace=True)
self.att_map = None
self.srm_sa = SRMPixelAttention(3)
self.srm_sa_post = nn.Sequential(
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
)
self.dual_cma0 = DualCrossModalAttention(in_dim=728, ret_att=False)
self.dual_cma1 = DualCrossModalAttention(in_dim=728, ret_att=False)
self.fusion = FeatureFusionModule()
self.att_dic = {}
def features(self, x):
srm = self.srm_conv0(x)
x = self.xception_rgb.model.fea_part1_0(x)
y = self.xception_srm.model.fea_part1_0(srm) \
+ self.srm_conv1(x)
y = self.relu(y)
x = self.xception_rgb.model.fea_part1_1(x)
y = self.xception_srm.model.fea_part1_1(y) \
+ self.srm_conv2(x)
y = self.relu(y)
# srm guided spatial attention
self.att_map = self.srm_sa(srm)
x = x * self.att_map + x
x = self.srm_sa_post(x)
x = self.xception_rgb.model.fea_part2(x)
y = self.xception_srm.model.fea_part2(y)
x, y = self.dual_cma0(x, y)
x = self.xception_rgb.model.fea_part3(x)
y = self.xception_srm.model.fea_part3(y)
x, y = self.dual_cma1(x, y)
x = self.xception_rgb.model.fea_part4(x)
y = self.xception_srm.model.fea_part4(y)
x = self.xception_rgb.model.fea_part5(x)
y = self.xception_srm.model.fea_part5(y)
fea = self.fusion(x, y)
return fea
def classifier(self, fea):
out, fea = self.xception_rgb.classifier(fea)
return out, fea
def forward(self, x):
'''
x: original rgb
Return:
out: (B, 2) the output for loss computing
fea: (B, 1024) the flattened features before the last FC
att_map: srm spatial attention map
'''
out, fea = self.classifier(self.features(x))
return out, fea, self.att_map
if __name__ == '__main__':
model = Two_Stream_Net()
dummy = torch.rand((1,3,256,256))
out = model(dummy)
print(model)
|