File size: 4,110 Bytes
cd97fb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
    

class SRMConv2d_simple(nn.Module):
    
    def __init__(self, inc=3, learnable=False):
        super(SRMConv2d_simple, self).__init__()
        self.truc = nn.Hardtanh(-3, 3)
        kernel = self._build_kernel(inc)  # (3,3,5,5)
        self.kernel = nn.Parameter(data=kernel, requires_grad=learnable)
        # self.hor_kernel = self._build_kernel().transpose(0,1,3,2)

    def forward(self, x):
        '''
        x: imgs (Batch, H, W, 3)
        '''
        out = F.conv2d(x, self.kernel, stride=1, padding=2)
        out = self.truc(out)

        return out

    def _build_kernel(self, inc):
        # filter1: KB
        filter1 = [[0, 0, 0, 0, 0],
                   [0, -1, 2, -1, 0],
                   [0, 2, -4, 2, 0],
                   [0, -1, 2, -1, 0],
                   [0, 0, 0, 0, 0]]
        # filter2:KV
        filter2 = [[-1, 2, -2, 2, -1],
                   [2, -6, 8, -6, 2],
                   [-2, 8, -12, 8, -2],
                   [2, -6, 8, -6, 2],
                   [-1, 2, -2, 2, -1]]
        # filter3:hor 2rd
        filter3 = [[0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0],
                  [0, 1, -2, 1, 0],
                  [0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0]]

        filter1 = np.asarray(filter1, dtype=float) / 4.
        filter2 = np.asarray(filter2, dtype=float) / 12.
        filter3 = np.asarray(filter3, dtype=float) / 2.
        # statck the filters
        filters = [[filter1],#, filter1, filter1],
                   [filter2],#, filter2, filter2],
                   [filter3]]#, filter3, filter3]]  # (3,3,5,5)
        filters = np.array(filters)
        filters = np.repeat(filters, inc, axis=1)
        filters = torch.FloatTensor(filters)    # (3,3,5,5)
        return filters

class SRMConv2d_Separate(nn.Module):
    
    def __init__(self, inc, outc, learnable=False):
        super(SRMConv2d_Separate, self).__init__()
        self.inc = inc
        self.truc = nn.Hardtanh(-3, 3)
        kernel = self._build_kernel(inc)  # (3,3,5,5)
        self.kernel = nn.Parameter(data=kernel, requires_grad=learnable)
        # self.hor_kernel = self._build_kernel().transpose(0,1,3,2)
        self.out_conv = nn.Sequential(
            nn.Conv2d(3*inc, outc, 1, 1, 0, 1, 1, bias=False),
            nn.BatchNorm2d(outc),
            nn.ReLU(inplace=True)
        )

        for ly in self.out_conv.children():
            if isinstance(ly, nn.Conv2d):
                nn.init.kaiming_normal_(ly.weight, a=1)

    def forward(self, x):
        '''
        x: imgs (Batch, H, W, 3)
        '''
        out = F.conv2d(x, self.kernel, stride=1, padding=2, groups=self.inc)
        out = self.truc(out)
        out = self.out_conv(out)

        return out

    def _build_kernel(self, inc):
        # filter1: KB
        filter1 = [[0, 0, 0, 0, 0],
                   [0, -1, 2, -1, 0],
                   [0, 2, -4, 2, 0],
                   [0, -1, 2, -1, 0],
                   [0, 0, 0, 0, 0]]
        # filter2:KV
        filter2 = [[-1, 2, -2, 2, -1],
                   [2, -6, 8, -6, 2],
                   [-2, 8, -12, 8, -2],
                   [2, -6, 8, -6, 2],
                   [-1, 2, -2, 2, -1]]
        # # filter3:hor 2rd
        filter3 = [[0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0],
                  [0, 1, -2, 1, 0],
                  [0, 0, 0, 0, 0],
                  [0, 0, 0, 0, 0]]

        filter1 = np.asarray(filter1, dtype=float) / 4.
        filter2 = np.asarray(filter2, dtype=float) / 12.
        filter3 = np.asarray(filter3, dtype=float) / 2.
        # statck the filters
        filters = [[filter1],#, filter1, filter1],
                   [filter2],#, filter2, filter2],
                   [filter3]]#, filter3, filter3]]  # (3,3,5,5)
        filters = np.array(filters)
        # filters = np.repeat(filters, inc, axis=1)
        filters = np.repeat(filters, inc, axis=0)
        filters = torch.FloatTensor(filters)    # (3,3,5,5)
        # print(filters.size())
        return filters