Spaces:
Build error
Build error
import numpy as np | |
import cv2 | |
from landmark_utils import detect_frames_track | |
def detect_track(video): | |
vidcap = cv2.VideoCapture(video) | |
frames = [] | |
while True: | |
success, image = vidcap.read() | |
if success: | |
frames.append(image) | |
else: | |
break | |
raw_data = detect_frames_track(frames) | |
vidcap.release() | |
return np.array(raw_data) | |
def extract_landmark(video): | |
raw_data = detect_track(video) | |
if len(raw_data) == 0: | |
print("No face detected", video) | |
else: | |
np.savetxt(video + ".txt", raw_data, fmt='%1.5f') | |
path = video + ".txt" | |
return path | |
def get_data_for_test(path, fake, block): # fake:manipulated=1 original=0 | |
file = path | |
x = [] | |
x_diff = [] | |
y = [] | |
video_y = [] | |
count_y = {} | |
sample_to_video = [] | |
# for file in tqdm(files): | |
vectors = np.loadtxt(file) | |
print("vectors = ",vectors) | |
video_y.append(fake) | |
for i in range(0, vectors.shape[0] - block, block): | |
vec = vectors[i:i + block, :] | |
x.append(vec) | |
vec_next = vectors[i + 1:i + block, :] | |
vec_next = np.pad(vec_next, ((0, 1), (0, 0)), 'constant', constant_values=(0, 0)) | |
vec_diff = (vec_next - vec)[:block - 1, :] | |
x_diff.append(vec_diff) | |
y.append(fake) | |
# Dict for counting number of samples in video | |
if file not in count_y: | |
count_y[file] = 1 | |
else: | |
count_y[file] += 1 | |
sample_to_video.append(file) | |
return np.array(x), np.array(x_diff), np.array(y), np.array(video_y), np.array(sample_to_video), count_y | |
def merge_video_prediction(mix_prediction, s2v, vc): | |
prediction_video = [] | |
pre_count = {} | |
for p, v_label in zip(mix_prediction, s2v): | |
p_bi = 0 | |
if p >= 0.5: | |
p_bi = 1 | |
if v_label in pre_count: | |
pre_count[v_label] += p_bi | |
else: | |
pre_count[v_label] = p_bi | |
for key in pre_count.keys(): | |
prediction_video.append(pre_count[key] / vc[key]) | |
return prediction_video |