asdasdasdasd commited on
Commit
96e5a5e
·
1 Parent(s): 13b5277

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -1,18 +1,16 @@
1
  import tensorflow.keras as K
2
  from tensorflow.keras import layers
3
-
4
  import keras
5
-
6
  import os
7
  import tensorflow as tf
8
  import gradio as gr
9
  from extract_landmarks import get_data_for_test,extract_landmark,merge_video_prediction
 
10
 
11
  block_size = 60
12
  DROPOUT_RATE = 0.5
13
  RNN_UNIT = 64
14
  os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
15
- os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
16
  os.environ["CUDA_VISIBLE_DEVICES"] = "0"
17
 
18
  gpus = tf.config.list_physical_devices(device_type='GPU')
@@ -21,6 +19,8 @@ for gpu in gpus:
21
  device = "CPU" if len(gpus) == 0 else "GPU"
22
  print("using {}".format(device))
23
 
 
 
24
  def predict(video):
25
  path = extract_landmark(video)
26
  test_samples, test_samples_diff, _, _, test_sv, test_vc = get_data_for_test(path, 1, block_size)
@@ -79,10 +79,12 @@ def predict(video):
79
  else:
80
  label = "Real"
81
  print("the pd is {}".format(pd))
82
- return label
 
 
83
 
84
  inputs = gr.inputs.Video()
85
- outputs = gr.outputs.Textbox()
86
  iface = gr.Interface(fn=predict, inputs=inputs, outputs=outputs,
87
  examples=[["sample__real.mp4"],["sample__fake.mp4"],["sample__real2.mp4"],["sample__fake2.mp4"]],
88
  theme = "grass",
 
1
  import tensorflow.keras as K
2
  from tensorflow.keras import layers
 
3
  import keras
 
4
  import os
5
  import tensorflow as tf
6
  import gradio as gr
7
  from extract_landmarks import get_data_for_test,extract_landmark,merge_video_prediction
8
+ from detect_from_videos import test_full_image_network
9
 
10
  block_size = 60
11
  DROPOUT_RATE = 0.5
12
  RNN_UNIT = 64
13
  os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
 
14
  os.environ["CUDA_VISIBLE_DEVICES"] = "0"
15
 
16
  gpus = tf.config.list_physical_devices(device_type='GPU')
 
19
  device = "CPU" if len(gpus) == 0 else "GPU"
20
  print("using {}".format(device))
21
 
22
+ model_path = '3_ff_raw.pkl'
23
+
24
  def predict(video):
25
  path = extract_landmark(video)
26
  test_samples, test_samples_diff, _, _, test_sv, test_vc = get_data_for_test(path, 1, block_size)
 
79
  else:
80
  label = "Real"
81
  print("the pd is {}".format(pd))
82
+
83
+ output_video = test_full_image_network(video,model_path)
84
+ return label,output_video
85
 
86
  inputs = gr.inputs.Video()
87
+ outputs = [gr.outputs.Textbox(),gr.Video()]
88
  iface = gr.Interface(fn=predict, inputs=inputs, outputs=outputs,
89
  examples=[["sample__real.mp4"],["sample__fake.mp4"],["sample__real2.mp4"],["sample__fake2.mp4"]],
90
  theme = "grass",