Spaces:
Build error
Build error
Commit
·
cdbd3dd
1
Parent(s):
c98be58
Upload xception.py
Browse files- xception.py +460 -0
xception.py
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Code from https://github.com/ondyari/FaceForensics
|
3 |
+
Author: Andreas Rössler
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
import argparse
|
7 |
+
|
8 |
+
|
9 |
+
import torch
|
10 |
+
# import pretrainedmodels
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
# from lib.nets.xception import xception
|
14 |
+
import math
|
15 |
+
import torchvision
|
16 |
+
|
17 |
+
# import math
|
18 |
+
# import torch
|
19 |
+
# import torch.nn as nn
|
20 |
+
# import torch.nn.functional as F
|
21 |
+
import torch.utils.model_zoo as model_zoo
|
22 |
+
from torch.nn import init
|
23 |
+
|
24 |
+
pretrained_settings = {
|
25 |
+
'xception': {
|
26 |
+
'imagenet': {
|
27 |
+
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/xception-b5690688.pth',
|
28 |
+
'input_space': 'RGB',
|
29 |
+
'input_size': [3, 299, 299],
|
30 |
+
'input_range': [0, 1],
|
31 |
+
'mean': [0.5, 0.5, 0.5],
|
32 |
+
'std': [0.5, 0.5, 0.5],
|
33 |
+
'num_classes': 1000,
|
34 |
+
'scale': 0.8975 # The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
|
35 |
+
}
|
36 |
+
}
|
37 |
+
}
|
38 |
+
|
39 |
+
PRETAINED_WEIGHT_PATH = './pretrained_models/xception-b5690688.pth'
|
40 |
+
|
41 |
+
class SeparableConv2d(nn.Module):
|
42 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=False):
|
43 |
+
super(SeparableConv2d, self).__init__()
|
44 |
+
|
45 |
+
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size,
|
46 |
+
stride, padding, dilation, groups=in_channels, bias=bias)
|
47 |
+
self.pointwise = nn.Conv2d(
|
48 |
+
in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
x = self.conv1(x)
|
52 |
+
x = self.pointwise(x)
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
class Block(nn.Module):
|
57 |
+
def __init__(self, in_filters, out_filters, reps, strides=1, start_with_relu=True, grow_first=True):
|
58 |
+
super(Block, self).__init__()
|
59 |
+
|
60 |
+
if out_filters != in_filters or strides != 1:
|
61 |
+
self.skip = nn.Conv2d(in_filters, out_filters,
|
62 |
+
1, stride=strides, bias=False)
|
63 |
+
self.skipbn = nn.BatchNorm2d(out_filters)
|
64 |
+
else:
|
65 |
+
self.skip = None
|
66 |
+
|
67 |
+
self.relu = nn.ReLU(inplace=True)
|
68 |
+
rep = []
|
69 |
+
|
70 |
+
filters = in_filters
|
71 |
+
if grow_first:
|
72 |
+
rep.append(self.relu)
|
73 |
+
rep.append(SeparableConv2d(in_filters, out_filters,
|
74 |
+
3, stride=1, padding=1, bias=False))
|
75 |
+
rep.append(nn.BatchNorm2d(out_filters))
|
76 |
+
filters = out_filters
|
77 |
+
|
78 |
+
for i in range(reps-1):
|
79 |
+
rep.append(self.relu)
|
80 |
+
rep.append(SeparableConv2d(filters, filters,
|
81 |
+
3, stride=1, padding=1, bias=False))
|
82 |
+
rep.append(nn.BatchNorm2d(filters))
|
83 |
+
|
84 |
+
if not grow_first:
|
85 |
+
rep.append(self.relu)
|
86 |
+
rep.append(SeparableConv2d(in_filters, out_filters,
|
87 |
+
3, stride=1, padding=1, bias=False))
|
88 |
+
rep.append(nn.BatchNorm2d(out_filters))
|
89 |
+
|
90 |
+
if not start_with_relu:
|
91 |
+
rep = rep[1:]
|
92 |
+
else:
|
93 |
+
rep[0] = nn.ReLU(inplace=False)
|
94 |
+
|
95 |
+
if strides != 1:
|
96 |
+
rep.append(nn.MaxPool2d(3, strides, 1))
|
97 |
+
self.rep = nn.Sequential(*rep)
|
98 |
+
|
99 |
+
def forward(self, inp):
|
100 |
+
x = self.rep(inp)
|
101 |
+
|
102 |
+
if self.skip is not None:
|
103 |
+
skip = self.skip(inp)
|
104 |
+
skip = self.skipbn(skip)
|
105 |
+
else:
|
106 |
+
skip = inp
|
107 |
+
|
108 |
+
x += skip
|
109 |
+
return x
|
110 |
+
|
111 |
+
|
112 |
+
def add_gaussian_noise(ins, mean=0, stddev=0.2):
|
113 |
+
noise = ins.data.new(ins.size()).normal_(mean, stddev)
|
114 |
+
return ins + noise
|
115 |
+
|
116 |
+
|
117 |
+
class Xception(nn.Module):
|
118 |
+
"""
|
119 |
+
Xception optimized for the ImageNet dataset, as specified in
|
120 |
+
https://arxiv.org/pdf/1610.02357.pdf
|
121 |
+
"""
|
122 |
+
|
123 |
+
def __init__(self, num_classes=1000, inc=3):
|
124 |
+
""" Constructor
|
125 |
+
Args:
|
126 |
+
num_classes: number of classes
|
127 |
+
"""
|
128 |
+
super(Xception, self).__init__()
|
129 |
+
self.num_classes = num_classes
|
130 |
+
|
131 |
+
# Entry flow
|
132 |
+
self.conv1 = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
|
133 |
+
self.bn1 = nn.BatchNorm2d(32)
|
134 |
+
self.relu = nn.ReLU(inplace=True)
|
135 |
+
|
136 |
+
self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
|
137 |
+
self.bn2 = nn.BatchNorm2d(64)
|
138 |
+
# do relu here
|
139 |
+
|
140 |
+
self.block1 = Block(
|
141 |
+
64, 128, 2, 2, start_with_relu=False, grow_first=True)
|
142 |
+
self.block2 = Block(
|
143 |
+
128, 256, 2, 2, start_with_relu=True, grow_first=True)
|
144 |
+
self.block3 = Block(
|
145 |
+
256, 728, 2, 2, start_with_relu=True, grow_first=True)
|
146 |
+
|
147 |
+
# middle flow
|
148 |
+
self.block4 = Block(
|
149 |
+
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
150 |
+
self.block5 = Block(
|
151 |
+
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
152 |
+
self.block6 = Block(
|
153 |
+
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
154 |
+
self.block7 = Block(
|
155 |
+
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
156 |
+
|
157 |
+
self.block8 = Block(
|
158 |
+
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
159 |
+
self.block9 = Block(
|
160 |
+
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
161 |
+
self.block10 = Block(
|
162 |
+
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
163 |
+
self.block11 = Block(
|
164 |
+
728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
165 |
+
|
166 |
+
# Exit flow
|
167 |
+
self.block12 = Block(
|
168 |
+
728, 1024, 2, 2, start_with_relu=True, grow_first=False)
|
169 |
+
|
170 |
+
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
|
171 |
+
self.bn3 = nn.BatchNorm2d(1536)
|
172 |
+
|
173 |
+
# do relu here
|
174 |
+
self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
|
175 |
+
self.bn4 = nn.BatchNorm2d(2048)
|
176 |
+
|
177 |
+
self.fc = nn.Linear(2048, num_classes)
|
178 |
+
|
179 |
+
# #------- init weights --------
|
180 |
+
# for m in self.modules():
|
181 |
+
# if isinstance(m, nn.Conv2d):
|
182 |
+
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
183 |
+
# m.weight.data.normal_(0, math.sqrt(2. / n))
|
184 |
+
# elif isinstance(m, nn.BatchNorm2d):
|
185 |
+
# m.weight.data.fill_(1)
|
186 |
+
# m.bias.data.zero_()
|
187 |
+
# #-----------------------------
|
188 |
+
def fea_part1_0(self, x):
|
189 |
+
x = self.conv1(x)
|
190 |
+
x = self.bn1(x)
|
191 |
+
x = self.relu(x)
|
192 |
+
|
193 |
+
return x
|
194 |
+
|
195 |
+
def fea_part1_1(self, x):
|
196 |
+
|
197 |
+
x = self.conv2(x)
|
198 |
+
x = self.bn2(x)
|
199 |
+
x = self.relu(x)
|
200 |
+
|
201 |
+
return x
|
202 |
+
|
203 |
+
def fea_part1(self, x):
|
204 |
+
x = self.conv1(x)
|
205 |
+
x = self.bn1(x)
|
206 |
+
x = self.relu(x)
|
207 |
+
|
208 |
+
x = self.conv2(x)
|
209 |
+
x = self.bn2(x)
|
210 |
+
x = self.relu(x)
|
211 |
+
|
212 |
+
return x
|
213 |
+
|
214 |
+
def fea_part2(self, x):
|
215 |
+
x = self.block1(x)
|
216 |
+
x = self.block2(x)
|
217 |
+
x = self.block3(x)
|
218 |
+
|
219 |
+
return x
|
220 |
+
|
221 |
+
def fea_part3(self, x):
|
222 |
+
x = self.block4(x)
|
223 |
+
x = self.block5(x)
|
224 |
+
x = self.block6(x)
|
225 |
+
x = self.block7(x)
|
226 |
+
|
227 |
+
return x
|
228 |
+
|
229 |
+
def fea_part4(self, x):
|
230 |
+
x = self.block8(x)
|
231 |
+
x = self.block9(x)
|
232 |
+
x = self.block10(x)
|
233 |
+
x = self.block11(x)
|
234 |
+
|
235 |
+
return x
|
236 |
+
|
237 |
+
def fea_part5(self, x):
|
238 |
+
x = self.block12(x)
|
239 |
+
|
240 |
+
x = self.conv3(x)
|
241 |
+
x = self.bn3(x)
|
242 |
+
x = self.relu(x)
|
243 |
+
|
244 |
+
x = self.conv4(x)
|
245 |
+
x = self.bn4(x)
|
246 |
+
|
247 |
+
return x
|
248 |
+
|
249 |
+
def features(self, input):
|
250 |
+
x = self.fea_part1(input)
|
251 |
+
|
252 |
+
x = self.fea_part2(x)
|
253 |
+
x = self.fea_part3(x)
|
254 |
+
x = self.fea_part4(x)
|
255 |
+
|
256 |
+
x = self.fea_part5(x)
|
257 |
+
return x
|
258 |
+
|
259 |
+
def classifier(self, features):
|
260 |
+
x = self.relu(features)
|
261 |
+
|
262 |
+
x = F.adaptive_avg_pool2d(x, (1, 1))
|
263 |
+
x = x.view(x.size(0), -1)
|
264 |
+
out = self.last_linear(x)
|
265 |
+
return out, x
|
266 |
+
|
267 |
+
def forward(self, input):
|
268 |
+
x = self.features(input)
|
269 |
+
out, x = self.classifier(x)
|
270 |
+
return out, x
|
271 |
+
|
272 |
+
|
273 |
+
def xception(num_classes=1000, pretrained='imagenet', inc=3):
|
274 |
+
model = Xception(num_classes=num_classes, inc=inc)
|
275 |
+
if pretrained:
|
276 |
+
settings = pretrained_settings['xception'][pretrained]
|
277 |
+
assert num_classes == settings['num_classes'], \
|
278 |
+
"num_classes should be {}, but is {}".format(
|
279 |
+
settings['num_classes'], num_classes)
|
280 |
+
|
281 |
+
model = Xception(num_classes=num_classes)
|
282 |
+
model.load_state_dict(model_zoo.load_url(settings['url']))
|
283 |
+
|
284 |
+
model.input_space = settings['input_space']
|
285 |
+
model.input_size = settings['input_size']
|
286 |
+
model.input_range = settings['input_range']
|
287 |
+
model.mean = settings['mean']
|
288 |
+
model.std = settings['std']
|
289 |
+
|
290 |
+
# TODO: ugly
|
291 |
+
model.last_linear = model.fc
|
292 |
+
del model.fc
|
293 |
+
return model
|
294 |
+
|
295 |
+
|
296 |
+
class TransferModel(nn.Module):
|
297 |
+
"""
|
298 |
+
Simple transfer learning model that takes an imagenet pretrained model with
|
299 |
+
a fc layer as base model and retrains a new fc layer for num_out_classes
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(self, modelchoice, num_out_classes=2, dropout=0.0,
|
303 |
+
weight_norm=False, return_fea=False, inc=3):
|
304 |
+
super(TransferModel, self).__init__()
|
305 |
+
self.modelchoice = modelchoice
|
306 |
+
self.return_fea = return_fea
|
307 |
+
|
308 |
+
if modelchoice == 'xception':
|
309 |
+
|
310 |
+
def return_pytorch04_xception(pretrained=True):
|
311 |
+
# Raises warning "src not broadcastable to dst" but thats fine
|
312 |
+
model = xception(pretrained=False)
|
313 |
+
if pretrained:
|
314 |
+
# Load model in torch 0.4+
|
315 |
+
model.fc = model.last_linear
|
316 |
+
del model.last_linear
|
317 |
+
state_dict = torch.load(
|
318 |
+
PRETAINED_WEIGHT_PATH)
|
319 |
+
for name, weights in state_dict.items():
|
320 |
+
if 'pointwise' in name:
|
321 |
+
state_dict[name] = weights.unsqueeze(
|
322 |
+
-1).unsqueeze(-1)
|
323 |
+
model.load_state_dict(state_dict)
|
324 |
+
model.last_linear = model.fc
|
325 |
+
del model.fc
|
326 |
+
return model
|
327 |
+
|
328 |
+
self.model = return_pytorch04_xception()
|
329 |
+
# Replace fc
|
330 |
+
num_ftrs = self.model.last_linear.in_features
|
331 |
+
if not dropout:
|
332 |
+
if weight_norm:
|
333 |
+
print('Using Weight_Norm')
|
334 |
+
self.model.last_linear = nn.utils.weight_norm(
|
335 |
+
nn.Linear(num_ftrs, num_out_classes), name='weight')
|
336 |
+
self.model.last_linear = nn.Linear(num_ftrs, num_out_classes)
|
337 |
+
else:
|
338 |
+
print('Using dropout', dropout)
|
339 |
+
if weight_norm:
|
340 |
+
print('Using Weight_Norm')
|
341 |
+
self.model.last_linear = nn.Sequential(
|
342 |
+
nn.Dropout(p=dropout),
|
343 |
+
nn.utils.weight_norm(
|
344 |
+
nn.Linear(num_ftrs, num_out_classes), name='weight')
|
345 |
+
)
|
346 |
+
|
347 |
+
self.model.last_linear = nn.Sequential(
|
348 |
+
nn.Dropout(p=dropout),
|
349 |
+
nn.Linear(num_ftrs, num_out_classes)
|
350 |
+
)
|
351 |
+
|
352 |
+
if inc != 3:
|
353 |
+
self.model.conv1 = nn.Conv2d(inc, 32, 3, 2, 0, bias=False)
|
354 |
+
nn.init.xavier_normal(self.model.conv1.weight.data, gain=0.02)
|
355 |
+
|
356 |
+
elif modelchoice == 'resnet50' or modelchoice == 'resnet18':
|
357 |
+
if modelchoice == 'resnet50':
|
358 |
+
self.model = torchvision.models.resnet50(pretrained=True)
|
359 |
+
if modelchoice == 'resnet18':
|
360 |
+
self.model = torchvision.models.resnet18(pretrained=True)
|
361 |
+
# Replace fc
|
362 |
+
num_ftrs = self.model.fc.in_features
|
363 |
+
if not dropout:
|
364 |
+
self.model.fc = nn.Linear(num_ftrs, num_out_classes)
|
365 |
+
else:
|
366 |
+
self.model.fc = nn.Sequential(
|
367 |
+
nn.Dropout(p=dropout),
|
368 |
+
nn.Linear(num_ftrs, num_out_classes)
|
369 |
+
)
|
370 |
+
else:
|
371 |
+
raise Exception('Choose valid model, e.g. resnet50')
|
372 |
+
|
373 |
+
def set_trainable_up_to(self, boolean=False, layername="Conv2d_4a_3x3"):
|
374 |
+
"""
|
375 |
+
Freezes all layers below a specific layer and sets the following layers
|
376 |
+
to true if boolean else only the fully connected final layer
|
377 |
+
:param boolean:
|
378 |
+
:param layername: depends on lib, for inception e.g. Conv2d_4a_3x3
|
379 |
+
:return:
|
380 |
+
"""
|
381 |
+
# Stage-1: freeze all the layers
|
382 |
+
if layername is None:
|
383 |
+
for i, param in self.model.named_parameters():
|
384 |
+
param.requires_grad = True
|
385 |
+
return
|
386 |
+
else:
|
387 |
+
for i, param in self.model.named_parameters():
|
388 |
+
param.requires_grad = False
|
389 |
+
if boolean:
|
390 |
+
# Make all layers following the layername layer trainable
|
391 |
+
ct = []
|
392 |
+
found = False
|
393 |
+
for name, child in self.model.named_children():
|
394 |
+
if layername in ct:
|
395 |
+
found = True
|
396 |
+
for params in child.parameters():
|
397 |
+
params.requires_grad = True
|
398 |
+
ct.append(name)
|
399 |
+
if not found:
|
400 |
+
raise NotImplementedError('Layer not found, cant finetune!'.format(
|
401 |
+
layername))
|
402 |
+
else:
|
403 |
+
if self.modelchoice == 'xception':
|
404 |
+
# Make fc trainable
|
405 |
+
for param in self.model.last_linear.parameters():
|
406 |
+
param.requires_grad = True
|
407 |
+
|
408 |
+
else:
|
409 |
+
# Make fc trainable
|
410 |
+
for param in self.model.fc.parameters():
|
411 |
+
param.requires_grad = True
|
412 |
+
|
413 |
+
def forward(self, x):
|
414 |
+
out, x = self.model(x)
|
415 |
+
if self.return_fea:
|
416 |
+
return out, x
|
417 |
+
else:
|
418 |
+
return out
|
419 |
+
|
420 |
+
def features(self, x):
|
421 |
+
x = self.model.features(x)
|
422 |
+
return x
|
423 |
+
|
424 |
+
def classifier(self, x):
|
425 |
+
out, x = self.model.classifier(x)
|
426 |
+
return out, x
|
427 |
+
|
428 |
+
|
429 |
+
def model_selection(modelname, num_out_classes,
|
430 |
+
dropout=None):
|
431 |
+
"""
|
432 |
+
:param modelname:
|
433 |
+
:return: model, image size, pretraining<yes/no>, input_list
|
434 |
+
"""
|
435 |
+
if modelname == 'xception':
|
436 |
+
return TransferModel(modelchoice='xception',
|
437 |
+
num_out_classes=num_out_classes), 299, \
|
438 |
+
True, ['image'], None
|
439 |
+
elif modelname == 'resnet18':
|
440 |
+
return TransferModel(modelchoice='resnet18', dropout=dropout,
|
441 |
+
num_out_classes=num_out_classes), \
|
442 |
+
224, True, ['image'], None
|
443 |
+
else:
|
444 |
+
raise NotImplementedError(modelname)
|
445 |
+
|
446 |
+
|
447 |
+
if __name__ == '__main__':
|
448 |
+
model = TransferModel('xception', dropout=0.5)
|
449 |
+
print(model)
|
450 |
+
# model = model.cuda()
|
451 |
+
# from torchsummary import summary
|
452 |
+
# input_s = (3, image_size, image_size)
|
453 |
+
# print(summary(model, input_s))
|
454 |
+
dummy = torch.rand(10, 3, 256, 256)
|
455 |
+
out = model(dummy)
|
456 |
+
print(out.size())
|
457 |
+
x = model.features(dummy)
|
458 |
+
out, x = model.classifier(x)
|
459 |
+
print(out.size())
|
460 |
+
print(x.size())
|