import math import torch import torch.nn as nn import torch.nn.functional as F """ Channel Attention and Spaitial Attention from Woo, S., Park, J., Lee, J.Y., & Kweon, I. CBAM: Convolutional Block Attention Module. ECCV2018. """ class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=8): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.sharedMLP = nn.Sequential( nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(), nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)) self.sigmoid = nn.Sigmoid() for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.xavier_normal_(m.weight.data, gain=0.02) def forward(self, x): avgout = self.sharedMLP(self.avg_pool(x)) maxout = self.sharedMLP(self.max_pool(x)) return self.sigmoid(avgout + maxout) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), "kernel size must be 3 or 7" padding = 3 if kernel_size == 7 else 1 self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.xavier_normal_(m.weight.data, gain=0.02) def forward(self, x): avgout = torch.mean(x, dim=1, keepdim=True) maxout, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avgout, maxout], dim=1) x = self.conv(x) return self.sigmoid(x) """ The following modules are modified based on https://github.com/heykeetae/Self-Attention-GAN """ class Self_Attn(nn.Module): """ Self attention Layer""" def __init__(self, in_dim, out_dim=None, add=False, ratio=8): super(Self_Attn, self).__init__() self.chanel_in = in_dim self.add = add if out_dim is None: out_dim = in_dim self.out_dim = out_dim # self.activation = activation self.query_conv = nn.Conv2d( in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1) self.key_conv = nn.Conv2d( in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1) self.value_conv = nn.Conv2d( in_channels=in_dim, out_channels=out_dim, kernel_size=1) self.gamma = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) def forward(self, x): """ inputs : x : input feature maps( B X C X W X H) returns : out : self attention value + input feature attention: B X N X N (N is Width*Height) """ m_batchsize, C, width, height = x.size() proj_query = self.query_conv(x).view( m_batchsize, -1, width*height).permute(0, 2, 1) # B X C X(N) proj_key = self.key_conv(x).view( m_batchsize, -1, width*height) # B X C x (*W*H) energy = torch.bmm(proj_query, proj_key) # transpose check attention = self.softmax(energy) # BX (N) X (N) proj_value = self.value_conv(x).view( m_batchsize, -1, width*height) # B X C X N out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(m_batchsize, self.out_dim, width, height) if self.add: out = self.gamma*out + x else: out = self.gamma*out return out # , attention class CrossModalAttention(nn.Module): """ CMA attention Layer""" def __init__(self, in_dim, activation=None, ratio=8, cross_value=True): super(CrossModalAttention, self).__init__() self.chanel_in = in_dim self.activation = activation self.cross_value = cross_value self.query_conv = nn.Conv2d( in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1) self.key_conv = nn.Conv2d( in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1) self.value_conv = nn.Conv2d( in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.gamma = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.xavier_normal_(m.weight.data, gain=0.02) def forward(self, x, y): """ inputs : x : input feature maps( B X C X W X H) returns : out : self attention value + input feature attention: B X N X N (N is Width*Height) """ B, C, H, W = x.size() proj_query = self.query_conv(x).view( B, -1, H*W).permute(0, 2, 1) # B , HW, C proj_key = self.key_conv(y).view( B, -1, H*W) # B X C x (*W*H) energy = torch.bmm(proj_query, proj_key) # B, HW, HW attention = self.softmax(energy) # BX (N) X (N) if self.cross_value: proj_value = self.value_conv(y).view( B, -1, H*W) # B , C , HW else: proj_value = self.value_conv(x).view( B, -1, H*W) # B , C , HW out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(B, C, H, W) out = self.gamma*out + x if self.activation is not None: out = self.activation(out) return out # , attention class DualCrossModalAttention(nn.Module): """ Dual CMA attention Layer""" def __init__(self, in_dim, activation=None, size=16, ratio=8, ret_att=False): super(DualCrossModalAttention, self).__init__() self.chanel_in = in_dim self.activation = activation self.ret_att = ret_att # query conv self.key_conv1 = nn.Conv2d( in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1) self.key_conv2 = nn.Conv2d( in_channels=in_dim, out_channels=in_dim//ratio, kernel_size=1) self.key_conv_share = nn.Conv2d( in_channels=in_dim//ratio, out_channels=in_dim//ratio, kernel_size=1) self.linear1 = nn.Linear(size*size, size*size) self.linear2 = nn.Linear(size*size, size*size) # separated value conv self.value_conv1 = nn.Conv2d( in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.gamma1 = nn.Parameter(torch.zeros(1)) self.value_conv2 = nn.Conv2d( in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.gamma2 = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.xavier_normal_(m.weight.data, gain=0.02) if isinstance(m, nn.Linear): nn.init.xavier_normal_(m.weight.data, gain=0.02) def forward(self, x, y): """ inputs : x : input feature maps( B X C X W X H) returns : out : self attention value + input feature attention: B X N X N (N is Width*Height) """ B, C, H, W = x.size() def _get_att(a, b): proj_key1 = self.key_conv_share(self.key_conv1(a)).view( B, -1, H*W).permute(0, 2, 1) # B, HW, C proj_key2 = self.key_conv_share(self.key_conv2(b)).view( B, -1, H*W) # B X C x (*W*H) energy = torch.bmm(proj_key1, proj_key2) # B, HW, HW attention1 = self.softmax(self.linear1(energy)) attention2 = self.softmax(self.linear2( energy.permute(0, 2, 1))) # BX (N) X (N) return attention1, attention2 att_y_on_x, att_x_on_y = _get_att(x, y) proj_value_y_on_x = self.value_conv2(y).view( B, -1, H*W) # B, C, HW out_y_on_x = torch.bmm(proj_value_y_on_x, att_y_on_x.permute(0, 2, 1)) out_y_on_x = out_y_on_x.view(B, C, H, W) out_x = self.gamma1*out_y_on_x + x proj_value_x_on_y = self.value_conv1(x).view( B, -1, H*W) # B , C , HW out_x_on_y = torch.bmm(proj_value_x_on_y, att_x_on_y.permute(0, 2, 1)) out_x_on_y = out_x_on_y.view(B, C, H, W) out_y = self.gamma2*out_x_on_y + y if self.ret_att: return out_x, out_y, att_y_on_x, att_x_on_y return out_x, out_y # , attention if __name__ == "__main__": x = torch.rand(10, 768, 16, 16) y = torch.rand(10, 768, 16, 16) dcma = DualCrossModalAttention(768, ret_att=True) out_x, out_y, att_y_on_x, att_x_on_y = dcma(x, y) print(out_y.size()) print(att_x_on_y.size())