Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# demo5
|
2 |
+
# tttt
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
8 |
+
from transformers import is_torch_npu_available
|
9 |
+
from threading import Thread
|
10 |
+
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-14B-Chat")
|
13 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-14B-Chat", torch_dtype=torch.bfloat16)
|
14 |
+
if is_torch_npu_available():
|
15 |
+
model.to("npu:0")
|
16 |
+
elif torch.cuda.is_available():
|
17 |
+
mode.to("cuda:0")
|
18 |
+
|
19 |
+
|
20 |
+
class StopOnTokens(StoppingCriteria):
|
21 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
22 |
+
stop_ids = [2]
|
23 |
+
for stop_id in stop_ids:
|
24 |
+
if input_ids[0][-1] == stop_id:
|
25 |
+
return True
|
26 |
+
return False
|
27 |
+
|
28 |
+
|
29 |
+
def predict(message, history):
|
30 |
+
#if is_torch_npu_available():
|
31 |
+
# torch.npu.set_device(model.device)
|
32 |
+
stop = StopOnTokens()
|
33 |
+
conversation = []
|
34 |
+
|
35 |
+
for user, assistant in history:
|
36 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
37 |
+
|
38 |
+
conversation.append({"role": "user", "content": message})
|
39 |
+
print(f'>>>conversation={conversation}', flush=True)
|
40 |
+
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
41 |
+
model_inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
42 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=100., skip_prompt=True, skip_special_tokens=True)
|
43 |
+
generate_kwargs = dict(
|
44 |
+
model_inputs,
|
45 |
+
streamer=streamer,
|
46 |
+
max_new_tokens=1024,
|
47 |
+
do_sample=True,
|
48 |
+
top_p=0.95,
|
49 |
+
top_k=50,
|
50 |
+
temperature=0.7,
|
51 |
+
repetition_penalty=1.0,
|
52 |
+
num_beams=1,
|
53 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
54 |
+
)
|
55 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
56 |
+
t.start()
|
57 |
+
partial_message = ""
|
58 |
+
for new_token in streamer:
|
59 |
+
partial_message += new_token
|
60 |
+
if '</s>' in partial_message:
|
61 |
+
break
|
62 |
+
yield partial_message
|
63 |
+
|
64 |
+
|
65 |
+
# Setting up the Gradio chat interface.
|
66 |
+
gr.ChatInterface(predict,
|
67 |
+
title="Qwen1.5 0.5B Chat Demo",
|
68 |
+
description="Warning. All answers are generated and may contain inaccurate information.",
|
69 |
+
examples=['How do you cook fish?', 'Who is the president of the United States?']
|
70 |
+
).launch()
|
71 |
+
|