File size: 5,781 Bytes
097bb8f
c5e64d6
 
 
b2a2545
c5e64d6
b2a2545
c5e64d6
097bb8f
 
b2a2545
097bb8f
 
 
 
 
 
 
beb9490
097bb8f
b2a2545
 
097bb8f
b2a2545
 
097bb8f
b2a2545
 
 
 
 
 
 
097bb8f
 
beb9490
 
c5e64d6
 
 
 
 
3233a40
b2a2545
c5e64d6
 
 
 
 
b2a2545
c5e64d6
 
 
 
 
b2a2545
 
 
c5e64d6
097bb8f
 
 
 
 
 
 
c5e64d6
b2a2545
c5e64d6
b2a2545
c5e64d6
 
 
 
fc063c1
b2a2545
c7a081d
c5e64d6
b2a2545
 
71a2add
 
b2a2545
 
 
 
 
 
c5e64d6
 
 
 
 
 
 
 
b2a2545
c7a081d
c5e64d6
 
 
b2a2545
c5e64d6
 
b2a2545
c5e64d6
 
 
 
 
 
 
 
b2a2545
097bb8f
 
 
 
 
 
 
beb9490
097bb8f
 
c5e64d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2a2545
c5e64d6
b2a2545
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from itertools import product
import streamlit as st
import numpy as np
import pandas as pd
from PIL import Image, ImageOps
import time
from paddleocr import PaddleOCR
import os
from dotenv import load_dotenv
from huggingface_hub import login

load_dotenv()  # Load .env file
huggingface_token = os.getenv("HF_TOKEN")
login(huggingface_token)

##########################LLAMA3BI################################
from huggingface_hub import InferenceClient
client = InferenceClient(api_key=huggingface_token)
messages = [
    {"role": "system", "content": """Your task is to get the product details out of the text given. 
                                    The text given will be raw text from OCR of product images,
                                    and the goal is to get product details and description so that it can be used for e-commerce product listing. 
                                    TRY TO KEEP THE LISTING IN FOLLOWING FORMAT. 
                                    \ud83d\udce6 [Product Name]
                                    \ud83d\udcb0 Price: $XX.XX
                                    ✨ Key Features:
                                    • [Main Feature 1]
                                    • [Main Feature 2]
                                    • [Main Feature 3]
                                    \ud83d\udcf8 [Product Image]
                                    \ud83c\udff7 Available Now on E-commerce Platform
                                    ✈️ Fast Shipping Available
                                    \ud83d\udecd️ Shop Now: [Link]
                                    🔍 Search: [Main Keywords]
                                    [#RelevantHashtags] """},
]

# Initialize PaddleOCR model
ocr = PaddleOCR(use_angle_cls=True, lang='en')

# Team details
team_members = [
    {"name": "Aman Deep", "image": "aman.jpg"},
    {"name": "Gaurav Lodhi", "image": "anandimg.jpg"}
]

# Function to display team members in circular format
def display_team_members(members, max_members_per_row=4):
    num_members = len(members)
    num_rows = (num_members + max_members_per_row - 1) // max_members_per_row

    for i in range(num_rows):
        cols = st.columns(min(max_members_per_row, num_members - i * max_members_per_row))
        for j, member in enumerate(members[i * max_members_per_row:(i + 1) * max_members_per_row]):
            with cols[j]:
                img = Image.open(member["image"])  
                st.image(img, use_column_width=True)  
                st.write(member["name"])  

# Function to simulate loading process with a progress bar
def simulate_progress():
    progress_bar = st.progress(0)
    for percent_complete in range(100):
        time.sleep(0.02)
        progress_bar.progress(percent_complete + 1)

# Title and description
st.title("Hacknovate 6.0")
# Team Details with links
st.sidebar.title("Hacknovate 6.0")
st.sidebar.write("DELHI TECHNOLOGICAL UNIVERSITY")

# Navbar with task tabs
st.sidebar.title("Navigation")
st.sidebar.write("Team Name: sadhya")
app_mode = st.sidebar.selectbox("Choose the task", ["Welcome", "Project Details", "Task 1", "Team Details"])

if app_mode == "Welcome":
    st.write("# Welcome to Hacknovate 6.0! 🎉")
    video_file = open('Finalist.mp4', 'rb')
    video_bytes = video_file.read()
    st.video(video_bytes) 
    welcome_image = Image.open("grid_banner.jpg")
    st.image(welcome_image, use_column_width=True)

elif app_mode == "Project Details":
    st.write("## Project Overview: Automating Product Listings with AI")
    st.write("Our system extracts product details using OCR and LLMs to create structured e-commerce listings.")

elif app_mode == "Team Details":
    st.write("## Meet Our Team:")
    display_team_members(team_members)
    st.write("Delhi Technological University")

elif app_mode == "Task 1":
    st.write("## Task 1: 🖼️ OCR to Extract Details 📄")
    st.write("Using OCR to extract details from product packaging material.")
    
    uploaded_files = st.file_uploader("Upload images of products", type=["jpeg", "png", "jpg"], accept_multiple_files=True)

    if uploaded_files:
        st.write("### Uploaded Images:")
        for uploaded_file in uploaded_files:
            img = Image.open(uploaded_file)
            st.image(img, use_column_width=True)

        if st.button("Start Analysis"):
            simulate_progress()
            for uploaded_image in uploaded_files:
                image = Image.open(uploaded_image)
                img_array = np.array(image)
                st.write(f"Extracting details from {uploaded_image.name}...")
                result = ocr.ocr(img_array, cls=True)
                text = " ".join([box[1][0] for line in result for box in line])
                st.write(f"OCR Result: {text}")
                simulate_progress()
                messages.append({"role": "user", "content": text})
                completion = client.chat.completions.create(
                    model="meta-llama/Llama-3.2-3B-Instruct", 
                    messages=messages, 
                    max_tokens=500
                )
                productListingContent = completion.choices[0].message
                st.markdown(productListingContent.content)
                st.markdown("---")
    else:
        st.write("Please upload images to extract product details.")

st.markdown(""" 
    <style>
        @keyframes fade-in {
            from { opacity: 0; }
            to { opacity: 1;}
        }
        .footer {
            text-align: center;
            font-size: 1.1em;
            animation: fade-in 2s;
            padding-top: 2rem;
        }
    </style>
    <div class="footer">
        <p>© 2024 Hacknovate 6.0. All rights reserved.</p>
    </div>
""", unsafe_allow_html=True)