Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,61 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import torch
|
3 |
-
from PIL import Image
|
4 |
-
import torchvision.transforms as transforms
|
5 |
-
from model import SiameseNetwork # Ensure this file exists with the model definition
|
6 |
-
|
7 |
-
# Define the device (GPU or CPU)
|
8 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
-
|
10 |
-
# Load the pre-trained Siamese model
|
11 |
-
model = SiameseNetwork().to(device)
|
12 |
-
model.load_state_dict(torch.load("siamese_model.pth", map_location=device))
|
13 |
-
model.eval()
|
14 |
-
|
15 |
-
# Define data transformation (resize, convert to tensor, normalize if needed)
|
16 |
-
transform = transforms.Compose([
|
17 |
-
transforms.Resize((100, 100)), # Resize to match the input size of the model
|
18 |
-
transforms.Grayscale(num_output_channels=1), # Convert images to grayscale for signature comparison
|
19 |
-
transforms.ToTensor(), # Convert image to tensor
|
20 |
-
])
|
21 |
-
|
22 |
-
# Streamlit interface
|
23 |
-
st.title("Signature Forgery Detection with Siamese Network")
|
24 |
-
st.write("Upload two signature images to check if they are from the same person or if one is forged.")
|
25 |
-
|
26 |
-
# Upload images
|
27 |
-
image1 = st.file_uploader("Upload First Signature Image", type=["png", "jpg", "jpeg"])
|
28 |
-
image2 = st.file_uploader("Upload Second Signature Image", type=["png", "jpg", "jpeg"])
|
29 |
-
|
30 |
-
if image1 and image2:
|
31 |
-
# Load and transform the images
|
32 |
-
img1 = Image.open(image1).convert("RGB")
|
33 |
-
img2 = Image.open(image2).convert("RGB")
|
34 |
-
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
# Display similarity score and interpretation
|
54 |
-
|
55 |
-
|
56 |
-
st.
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
from model import SiameseNetwork # Ensure this file exists with the model definition
|
6 |
+
|
7 |
+
# Define the device (GPU or CPU)
|
8 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
+
|
10 |
+
# Load the pre-trained Siamese model
|
11 |
+
model = SiameseNetwork().to(device)
|
12 |
+
model.load_state_dict(torch.load("siamese_model.pth", map_location=device))
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
# Define data transformation (resize, convert to tensor, normalize if needed)
|
16 |
+
transform = transforms.Compose([
|
17 |
+
transforms.Resize((100, 100)), # Resize to match the input size of the model
|
18 |
+
transforms.Grayscale(num_output_channels=1), # Convert images to grayscale for signature comparison
|
19 |
+
transforms.ToTensor(), # Convert image to tensor
|
20 |
+
])
|
21 |
+
|
22 |
+
# Streamlit interface
|
23 |
+
st.title("Signature Forgery Detection with Siamese Network")
|
24 |
+
st.write("Upload two signature images to check if they are from the same person or if one is forged.")
|
25 |
+
|
26 |
+
# Upload images
|
27 |
+
image1 = st.file_uploader("Upload First Signature Image", type=["png", "jpg", "jpeg"])
|
28 |
+
image2 = st.file_uploader("Upload Second Signature Image", type=["png", "jpg", "jpeg"])
|
29 |
+
|
30 |
+
if image1 and image2:
|
31 |
+
# Load and transform the images
|
32 |
+
img1 = Image.open(image1).convert("RGB")
|
33 |
+
img2 = Image.open(image2).convert("RGB")
|
34 |
+
|
35 |
+
# Transform the images before feeding them into the model
|
36 |
+
img1 = transform(img1).unsqueeze(0).to(device)
|
37 |
+
img2 = transform(img2).unsqueeze(0).to(device)
|
38 |
+
|
39 |
+
# Predict similarity using the Siamese model
|
40 |
+
output1, output2 = model(img1, img2)
|
41 |
+
euclidean_distance = torch.nn.functional.pairwise_distance(output1, output2)
|
42 |
+
|
43 |
+
# Set a threshold for similarity (can be tuned based on model performance)
|
44 |
+
threshold = 0.5 # You can adjust this threshold based on your model's performance
|
45 |
+
|
46 |
+
# Display both images and results side by side
|
47 |
+
col1, col2 = st.columns(2)
|
48 |
+
with col1:
|
49 |
+
st.image(img1.squeeze(0).cpu().permute(1, 2, 0), caption='First Signature Image', use_container_width=True)
|
50 |
+
with col2:
|
51 |
+
st.image(img2.squeeze(0).cpu().permute(1, 2, 0), caption='Second Signature Image', use_container_width=True)
|
52 |
+
|
53 |
+
# Display similarity score and interpretation side by side
|
54 |
+
col1, col2 = st.columns(2)
|
55 |
+
with col1:
|
56 |
+
st.success(f'Similarity Score (Euclidean Distance): {euclidean_distance.item():.4f}')
|
57 |
+
with col2:
|
58 |
+
if euclidean_distance.item() < threshold:
|
59 |
+
st.write("The signatures are likely from the **same person**.")
|
60 |
+
else:
|
61 |
+
st.write("The signatures **do not match**, one might be **forged**.")
|