Spaces:
Sleeping
Sleeping
Update app1.py
Browse files
app1.py
CHANGED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from PIL import Image
|
7 |
+
from typing import Tuple, List
|
8 |
+
|
9 |
+
from constants import MODEL_PATH, DATABASE_DIR, DATABASE_PATH
|
10 |
+
from detector import SignatureDetector, download_model
|
11 |
+
|
12 |
+
|
13 |
+
def create_gradio_interface():
|
14 |
+
# Download model if it doesn't exist
|
15 |
+
if not os.path.exists(MODEL_PATH):
|
16 |
+
download_model()
|
17 |
+
|
18 |
+
# Initialize the detector
|
19 |
+
detector = SignatureDetector(MODEL_PATH)
|
20 |
+
|
21 |
+
css = """
|
22 |
+
.custom-button {
|
23 |
+
background-color: #b0ffb8 !important;
|
24 |
+
color: black !important;
|
25 |
+
}
|
26 |
+
.custom-button:hover {
|
27 |
+
background-color: #b0ffb8b3 !important;
|
28 |
+
}
|
29 |
+
.container {
|
30 |
+
max-width: 1200px !important;
|
31 |
+
margin: auto !important;
|
32 |
+
}
|
33 |
+
.main-container {
|
34 |
+
gap: 20px !important;
|
35 |
+
}
|
36 |
+
.metrics-container {
|
37 |
+
padding: 1.5rem !important;
|
38 |
+
border-radius: 0.75rem !important;
|
39 |
+
background-color: #1f2937 !important;
|
40 |
+
margin: 1rem 0 !important;
|
41 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1) !important;
|
42 |
+
}
|
43 |
+
.metrics-title {
|
44 |
+
font-size: 1.25rem !important;
|
45 |
+
font-weight: 600 !important;
|
46 |
+
color: #1f2937 !important;
|
47 |
+
margin-bottom: 1rem !important;
|
48 |
+
}
|
49 |
+
.metrics-row {
|
50 |
+
display: flex !important;
|
51 |
+
gap: 1rem !important;
|
52 |
+
margin-top: 0.5rem !important;
|
53 |
+
}
|
54 |
+
"""
|
55 |
+
|
56 |
+
def process_image(image: Image.Image, conf_thres: float, iou_thres: float) -> Tuple[Image.Image, str, plt.Figure, plt.Figure, str, str]:
|
57 |
+
if image is None:
|
58 |
+
return None, None, None, None, None, None
|
59 |
+
|
60 |
+
output_image, metrics = detector.detect(image, conf_thres, iou_thres)
|
61 |
+
|
62 |
+
# Create plots data
|
63 |
+
hist_data = pd.DataFrame({"Time (ms)": metrics["times"]})
|
64 |
+
indices = range(
|
65 |
+
metrics["start_index"], metrics["start_index"] + len(metrics["times"])
|
66 |
+
)
|
67 |
+
|
68 |
+
line_data = pd.DataFrame(
|
69 |
+
{
|
70 |
+
"Inference": indices,
|
71 |
+
"Time (ms)": metrics["times"],
|
72 |
+
"Mean": [metrics["avg_time"]] * len(metrics["times"]),
|
73 |
+
}
|
74 |
+
)
|
75 |
+
|
76 |
+
hist_fig, line_fig = detector.create_plots(hist_data, line_data)
|
77 |
+
|
78 |
+
return (
|
79 |
+
output_image,
|
80 |
+
gr.update(
|
81 |
+
value=f"{metrics['total_inferences']}",
|
82 |
+
container=True,
|
83 |
+
),
|
84 |
+
hist_fig,
|
85 |
+
line_fig,
|
86 |
+
f"{metrics['avg_time']:.2f}",
|
87 |
+
f"{metrics['times'][-1]:.2f}",
|
88 |
+
)
|
89 |
+
|
90 |
+
def process_folder(files_paths: List[str], conf_thres: float, iou_thres: float):
|
91 |
+
if not files_paths:
|
92 |
+
return None, None, None, None, None, None
|
93 |
+
|
94 |
+
valid_extensions = [".jpg", ".jpeg", ".png"]
|
95 |
+
image_files = [
|
96 |
+
f for f in files_paths if os.path.splitext(f.lower())[1] in valid_extensions
|
97 |
+
]
|
98 |
+
|
99 |
+
if not image_files:
|
100 |
+
return None, None, None, None, None, None
|
101 |
+
|
102 |
+
for img_file in image_files:
|
103 |
+
image = Image.open(img_file)
|
104 |
+
|
105 |
+
yield process_image(image, conf_thres, iou_thres)
|
106 |
+
|
107 |
+
with gr.Blocks(
|
108 |
+
theme=gr.themes.Soft(
|
109 |
+
primary_hue="indigo", secondary_hue="gray", neutral_hue="gray"
|
110 |
+
),
|
111 |
+
css=css,
|
112 |
+
) as iface:
|
113 |
+
gr.HTML(
|
114 |
+
"""
|
115 |
+
<h1>Tech4Humans - Signature Detector</h1>
|
116 |
+
|
117 |
+
<div style="display: flex; align-items: center; gap: 10px;">
|
118 |
+
<a href="https://huggingface.co/tech4humans/yolov8s-signature-detector">
|
119 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md-dark.svg" alt="Model on HF">
|
120 |
+
</a>
|
121 |
+
<a href="https://huggingface.co/datasets/tech4humans/signature-detection">
|
122 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" alt="Dataset on HF">
|
123 |
+
</a>
|
124 |
+
<a href="https://github.com/tech4ai/t4ai-signature-detect-server">
|
125 |
+
<img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" alt="GitHub">
|
126 |
+
</a>
|
127 |
+
<a href="https://huggingface.co/blog/samuellimabraz/signature-detection-model">
|
128 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-md-dark.svg" alt="Article">
|
129 |
+
</a>
|
130 |
+
</div>
|
131 |
+
"""
|
132 |
+
)
|
133 |
+
gr.Markdown(
|
134 |
+
"""
|
135 |
+
This system uses the [**YOLOv8s**](https://huggingface.co/tech4humans/yolov8s-signature-detector) model, specially fine-tuned for detecting handwritten signatures in document images.
|
136 |
+
|
137 |
+
With this detector, it is possible to identify signatures in digital documents with high accuracy in real time, making it ideal for applications involving validation, organization, and document processing.
|
138 |
+
|
139 |
+
---
|
140 |
+
"""
|
141 |
+
)
|
142 |
+
|
143 |
+
with gr.Row(equal_height=True, elem_classes="main-container"):
|
144 |
+
# Left column for controls and information
|
145 |
+
with gr.Column(scale=1):
|
146 |
+
with gr.Tab("Single Image"):
|
147 |
+
input_image = gr.Image(label="Upload your document", type="pil")
|
148 |
+
with gr.Row():
|
149 |
+
clear_single_btn = gr.ClearButton([input_image], value="Clear")
|
150 |
+
detect_single_btn = gr.Button(
|
151 |
+
"Detect", elem_classes="custom-button"
|
152 |
+
)
|
153 |
+
|
154 |
+
with gr.Tab("Image Folder"):
|
155 |
+
input_folder = gr.File(
|
156 |
+
label="Upload a folder with images",
|
157 |
+
file_count="directory",
|
158 |
+
type="filepath",
|
159 |
+
)
|
160 |
+
with gr.Row():
|
161 |
+
clear_folder_btn = gr.ClearButton([input_folder], value="Clear")
|
162 |
+
detect_folder_btn = gr.Button(
|
163 |
+
"Detect", elem_classes="custom-button"
|
164 |
+
)
|
165 |
+
|
166 |
+
with gr.Group():
|
167 |
+
confidence_threshold = gr.Slider(
|
168 |
+
minimum=0.0,
|
169 |
+
maximum=1.0,
|
170 |
+
value=0.25,
|
171 |
+
step=0.05,
|
172 |
+
label="Confidence Threshold",
|
173 |
+
info="Adjust the minimum confidence score required for detection.",
|
174 |
+
)
|
175 |
+
iou_threshold = gr.Slider(
|
176 |
+
minimum=0.0,
|
177 |
+
maximum=1.0,
|
178 |
+
value=0.5,
|
179 |
+
step=0.05,
|
180 |
+
label="IoU Threshold",
|
181 |
+
info="Adjust the Intersection over Union threshold for Non-Maximum Suppression (NMS).",
|
182 |
+
)
|
183 |
+
|
184 |
+
with gr.Column(scale=1):
|
185 |
+
output_image = gr.Image(label="Detection Results")
|
186 |
+
|
187 |
+
with gr.Accordion("Examples", open=True):
|
188 |
+
gr.Examples(
|
189 |
+
label="Image Examples",
|
190 |
+
examples=[
|
191 |
+
["assets/images/example_{i}.jpg".format(i=i)]
|
192 |
+
for i in range(
|
193 |
+
0, len(os.listdir(os.path.join("assets", "images")))
|
194 |
+
)
|
195 |
+
],
|
196 |
+
inputs=input_image,
|
197 |
+
outputs=output_image,
|
198 |
+
fn=detector.detect_example,
|
199 |
+
cache_examples=True,
|
200 |
+
cache_mode="lazy",
|
201 |
+
)
|
202 |
+
|
203 |
+
with gr.Row(elem_classes="metrics-container"):
|
204 |
+
with gr.Column(scale=1):
|
205 |
+
total_inferences = gr.Textbox(
|
206 |
+
label="Total Inferences", show_copy_button=True, container=True
|
207 |
+
)
|
208 |
+
hist_plot = gr.Plot(label="Time Distribution", container=True)
|
209 |
+
|
210 |
+
with gr.Column(scale=1):
|
211 |
+
line_plot = gr.Plot(label="Time History", container=True)
|
212 |
+
with gr.Row(elem_classes="metrics-row"):
|
213 |
+
avg_inference_time = gr.Textbox(
|
214 |
+
label="Average Inference Time (ms)",
|
215 |
+
show_copy_button=True,
|
216 |
+
container=True,
|
217 |
+
)
|
218 |
+
last_inference_time = gr.Textbox(
|
219 |
+
label="Last Inference Time (ms)",
|
220 |
+
show_copy_button=True,
|
221 |
+
container=True,
|
222 |
+
)
|
223 |
+
|
224 |
+
with gr.Row(elem_classes="container"):
|
225 |
+
|
226 |
+
gr.Markdown(
|
227 |
+
"""
|
228 |
+
---
|
229 |
+
## About the Project
|
230 |
+
This project uses the YOLOv8s model fine-tuned for detecting handwritten signatures in document images. It was trained with data from the [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) and [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up) datasets, undergoing preprocessing and data augmentation processes.
|
231 |
+
### Key Metrics:
|
232 |
+
- **Precision:** 94.74%
|
233 |
+
- **Recall:** 89.72%
|
234 |
+
- **mAP@50:** 94.50%
|
235 |
+
- **mAP@50-95:** 67.35%
|
236 |
+
- **Inference Time (CPU):** 171.56 ms
|
237 |
+
Complete details on the training process, hyperparameter tuning, model evaluation, dataset creation, and inference server can be found in the links below.
|
238 |
+
|
239 |
+
---
|
240 |
+
**Developed by [Tech4Humans](https://www.tech4h.com.br/)** | **Model:** [YOLOv8s](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Dataset:** [Tobacco800 + signatures-xc8up](https://huggingface.co/datasets/tech4humans/signature-detection)
|
241 |
+
"""
|
242 |
+
)
|
243 |
+
|
244 |
+
clear_single_btn.add([output_image])
|
245 |
+
clear_folder_btn.add([output_image])
|
246 |
+
|
247 |
+
detect_single_btn.click(
|
248 |
+
fn=process_image,
|
249 |
+
inputs=[input_image, confidence_threshold, iou_threshold],
|
250 |
+
outputs=[
|
251 |
+
output_image,
|
252 |
+
total_inferences,
|
253 |
+
hist_plot,
|
254 |
+
line_plot,
|
255 |
+
avg_inference_time,
|
256 |
+
last_inference_time,
|
257 |
+
],
|
258 |
+
)
|
259 |
+
|
260 |
+
detect_folder_btn.click(
|
261 |
+
fn=process_folder,
|
262 |
+
inputs=[input_folder, confidence_threshold, iou_threshold],
|
263 |
+
outputs=[
|
264 |
+
output_image,
|
265 |
+
total_inferences,
|
266 |
+
hist_plot,
|
267 |
+
line_plot,
|
268 |
+
avg_inference_time,
|
269 |
+
last_inference_time,
|
270 |
+
],
|
271 |
+
)
|
272 |
+
|
273 |
+
# Carregar métricas iniciais ao carregar a página
|
274 |
+
iface.load(
|
275 |
+
fn=detector.load_initial_metrics,
|
276 |
+
inputs=None,
|
277 |
+
outputs=[
|
278 |
+
output_image,
|
279 |
+
total_inferences,
|
280 |
+
hist_plot,
|
281 |
+
line_plot,
|
282 |
+
avg_inference_time,
|
283 |
+
last_inference_time,
|
284 |
+
],
|
285 |
+
)
|
286 |
+
|
287 |
+
return iface
|
288 |
+
|
289 |
+
|
290 |
+
if __name__ == "__main__":
|
291 |
+
if not os.path.exists(DATABASE_PATH):
|
292 |
+
os.makedirs(DATABASE_DIR, exist_ok=True)
|
293 |
+
|
294 |
+
iface = create_gradio_interface()
|
295 |
+
iface.launch(ssr_mode=False, share=True)
|