import streamlit as st import torch from PIL import Image import torchvision.transforms as transforms from model import SiameseNetwork device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = SiameseNetwork().to(device) model.load_state_dict(torch.load("siamese_model.pth", map_location=device)) model.eval() transform = transforms.Compose([ transforms.Resize((100, 100)), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), # Converting image to tensor ]) # Streamlit interface st.title("Signature Forgery Detection with Siamese Network") st.write("Upload two signature images to check if they are from the same person or if one is forged.") # Upload images image1 = st.file_uploader("Upload First Signature Image", type=["png", "jpg", "jpeg"]) image2 = st.file_uploader("Upload Second Signature Image", type=["png", "jpg", "jpeg"]) if image1 and image2: img1 = Image.open(image1).convert("RGB") img2 = Image.open(image2).convert("RGB") ## Displaying input image col1, col2 = st.columns(2) with col1: st.image(img1, caption='First Signature Image', use_container_width=True) with col2: st.image(img2, caption='Second Signature Image', use_container_width=True) # Transforming the images before feeding them into the model img1 = transform(img1).unsqueeze(0).to(device) img2 = transform(img2).unsqueeze(0).to(device) # Predicting similarity using the Siamese model output1, output2 = model(img1, img2) euclidean_distance = torch.nn.functional.pairwise_distance(output1, output2) # Setting a threshold for similarity threshold = 0.5 # Display similaritying score and interpretation st.success(f'Similarity Score (Euclidean Distance): {euclidean_distance.item():.4f}') if euclidean_distance.item() < threshold: st.write("The signatures are likely from the **same person**.") else: st.write("The signatures **do not match**, one might be **forged**.")