Spaces:
Running
Running
File size: 5,534 Bytes
41b72e9 60c53f1 41b72e9 60c53f1 41b72e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import numpy as np
import torch
from tqdm import tqdm
import clip
from glob import glob
import gradio as gr
import os
import torchvision
import pickle
from collections import Counter
from SimSearch import FaissCosineNeighbors
# HELPERS
to_np = lambda x: x.data.to('cpu').numpy()
# DOWNLOAD THE DATASET and Files
torchvision.datasets.utils.download_file_from_google_drive('1kB1vNdVaNS1OGZ3K8BspBUKkPACCsnrG', '.', 'GTAV-Videos.zip')
torchvision.datasets.utils.download_file_from_google_drive('1pgvIBTs_6h23wIU28EdqO5y2T1wUfOak', '.', 'GTAV-embedding-vit32.zip')
# EXTRACT
torchvision.datasets.utils.extract_archive(from_path='GTAV-embedding-vit32.zip', to_path='Embeddings/VIT32/', remove_finished=False)
torchvision.datasets.utils.extract_archive(from_path='GTAV-Videos.zip', to_path='Videos/', remove_finished=False)
# Initialize CLIP model
clip.available_models()
# # Searcher
class GamePhysicsSearcher:
def __init__(self, CLIP_MODEL, GAME_NAME, EMBEDDING_PATH='./Embeddings/VIT32/'):
self.CLIP_MODEL = CLIP_MODEL
self.GAME_NAME = GAME_NAME
self.simsearcher = FaissCosineNeighbors()
self.all_embeddings = glob(f'{EMBEDDING_PATH}{self.GAME_NAME}/*.npy')
self.filenames = [os.path.basename(x) for x in self.all_embeddings]
self.file_to_class_id = {x:i for i, x in enumerate(self.filenames)}
self.class_id_to_file = {i:x for i, x in enumerate(self.filenames)}
self.build_index()
def read_features(self, file_path):
with open(file_path, 'rb') as f:
video_features = pickle.load(f)
return video_features
def read_all_features(self):
features = {}
filenames_extended = []
X_train = []
y_train = []
for i, vfile in enumerate(tqdm(self.all_embeddings)):
vfeatures = to_np(self.read_features(vfile))
features[vfile.split('/')[-1]] = vfeatures
X_train.extend(vfeatures)
y_train.extend([i]*vfeatures.shape[0])
filenames_extended.extend(vfeatures.shape[0]*[vfile.split('/')[-1]])
X_train = np.asarray(X_train)
y_train = np.asarray(y_train)
return X_train, y_train
def build_index(self):
X_train, y_train = self.read_all_features()
self.simsearcher.fit(X_train, y_train)
def text_to_vector(self, query):
text_tokens = clip.tokenize(query)
with torch.no_grad():
text_features = self.CLIP_MODEL.encode_text(text_tokens).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
return to_np(text_features)
# Source: https://stackoverflow.com/a/480227
def f7(self, seq):
seen = set()
seen_add = seen.add # This is for performance improvement, don't remove
return [x for x in seq if not (x in seen or seen_add(x))]
def search_top_k(self, q, k=5, pool_size=1000, search_mod='Majority'):
q = self.text_to_vector(q)
nearest_data_points = self.simsearcher.get_nearest_labels(q, pool_size)
if search_mod == 'Majority':
topKs = [x[0] for x in Counter(nearest_data_points[0]).most_common(k)]
elif search_mod == 'Top-K':
topKs = list(self.f7(nearest_data_points[0]))[:k]
video_filename = [f'./Videos/{self.GAME_NAME}/' + self.class_id_to_file[x].replace('npy', 'mp4') for x in topKs]
return video_filename
################ SEARCH CORE ################
# CRAETE CLIP MODEL
vit_model, vit_preprocess = clip.load("ViT-B/32")
vit_model.eval()
saved_searchers = {}
def gradio_search(query, game_name, selected_model, aggregator, pool_size, k=6):
# print(query, game_name, selected_model, aggregator, pool_size)
if f'{game_name}_{selected_model}' in saved_searchers.keys():
searcher = saved_searchers[f'{game_name}_{selected_model}']
else:
if selected_model == 'ViT-B/32':
model = vit_model
searcher = GamePhysicsSearcher(CLIP_MODEL=model, GAME_NAME=game_name)
else:
raise
saved_searchers[f'{game_name}_{selected_model}'] = searcher
results = []
relevant_videos = searcher.search_top_k(query, k=k, pool_size=pool_size, search_mod=aggregator)
params = ', '.join(map(str, [query, game_name, selected_model, aggregator, pool_size]))
results.append(params)
results.extend(relevant_videos)
print(results)
return results
list_of_games = ['Grand Theft Auto V']
# GRADIO APP
iface = gr.Interface(fn=gradio_search,
inputs =[ gr.inputs.Textbox(lines=1, placeholder='Search Query', default="A man in the air", label=None),
gr.inputs.Radio(list_of_games, label="Game To Search"),
gr.inputs.Radio(['ViT-B/32'], label="MODEL"),
gr.inputs.Radio(['Majority', 'Top-K'], label="Aggregator"),
gr.inputs.Slider(300, 2000, label="Pool Size"),
],
outputs=[
gr.outputs.Textbox(type="auto", label='Search Params'),
gr.outputs.Video(type='mp4', label='Result 1'),
gr.outputs.Video(type='mp4', label='Result 2'),
gr.outputs.Video(type='mp4', label='Result 3'),
gr.outputs.Video(type='mp4', label='Result 4'),
gr.outputs.Video(type='mp4', label='Result 5')],
server_port=7878,
server_name="0.0.0.0",
# examples=[],
title='CLIP Meets Game Physics Demo'
)
iface.launch() |