Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
bugs_ds = datasets.load_dataset("asgaardlab/SampleDataset", split="validation")
|
7 |
+
|
8 |
+
|
9 |
+
def generate_annotations(image_index):
|
10 |
+
image_index = int(image_index)
|
11 |
+
objects_json = bugs_ds[image_index]["Objects JSON"]
|
12 |
+
objects = json.loads(objects_json)
|
13 |
+
|
14 |
+
segmentation_image_rgb = bugs_ds[image_index]["Segmentation Image"]
|
15 |
+
segmentation_image_rgb = np.array(segmentation_image_rgb)
|
16 |
+
|
17 |
+
annotations = []
|
18 |
+
for obj in objects:
|
19 |
+
color = tuple(obj["color"].values())[:-1]
|
20 |
+
mask = np.all(segmentation_image_rgb == np.array(color), axis=-1).astype(
|
21 |
+
np.float32
|
22 |
+
)
|
23 |
+
annotations.append((mask, obj["name"]))
|
24 |
+
|
25 |
+
object_count = bugs_ds[image_index]["Object Count"]
|
26 |
+
victim_name = bugs_ds[image_index]["Victim Name"]
|
27 |
+
bug_type = bugs_ds[image_index]["Tag"]
|
28 |
+
|
29 |
+
return (
|
30 |
+
(bugs_ds[image_index]["Correct Image"], annotations),
|
31 |
+
objects,
|
32 |
+
object_count,
|
33 |
+
victim_name,
|
34 |
+
bug_type,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
# Setting up the Gradio interface using blocks API
|
39 |
+
with gr.Blocks() as demo:
|
40 |
+
gr.Markdown(
|
41 |
+
"Enter the image index and click **Submit** to view the segmentation annotations."
|
42 |
+
)
|
43 |
+
with gr.Row():
|
44 |
+
inp = gr.Slider(
|
45 |
+
minimum=0, maximum=len(bugs_ds) - 1, step=1, label="Image Index"
|
46 |
+
)
|
47 |
+
btn = gr.Button("Submit")
|
48 |
+
with gr.Row():
|
49 |
+
with gr.Column():
|
50 |
+
object_count = gr.Number(label="Object Count")
|
51 |
+
victim_name = gr.Textbox(label="Victim Name")
|
52 |
+
bug_type = gr.Textbox(label="Bug Type")
|
53 |
+
|
54 |
+
seg_img = gr.AnnotatedImage()
|
55 |
+
|
56 |
+
with gr.Row():
|
57 |
+
json_data = gr.JSON()
|
58 |
+
|
59 |
+
btn.click(
|
60 |
+
fn=generate_annotations,
|
61 |
+
inputs=inp,
|
62 |
+
outputs=[seg_img, json_data, object_count, victim_name, bug_type],
|
63 |
+
)
|
64 |
+
|
65 |
+
demo.launch()
|