File size: 30,725 Bytes
2fdce3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 |
# v1: initial release
# v2: add open and save folder icons
# v3: Add new Utilities tab for Dreambooth folder preparation
# v3.1: Adding captionning of images to utilities
import gradio as gr
import json
import math
import os
import subprocess
import pathlib
import argparse
from datetime import datetime
from library.common_gui import (
get_file_path,
get_saveasfile_path,
color_aug_changed,
save_inference_file,
run_cmd_advanced_training,
run_cmd_training,
update_my_data,
check_if_model_exist,
output_message,
verify_image_folder_pattern,
SaveConfigFile,
save_to_file
)
from library.class_configuration_file import ConfigurationFile
from library.class_source_model import SourceModel
from library.class_basic_training import BasicTraining
from library.class_advanced_training import AdvancedTraining
from library.class_folders import Folders
from library.class_command_executor import CommandExecutor
from library.class_sdxl_parameters import SDXLParameters
from library.tensorboard_gui import (
gradio_tensorboard,
start_tensorboard,
stop_tensorboard,
)
from library.dreambooth_folder_creation_gui import (
gradio_dreambooth_folder_creation_tab,
)
from library.utilities import utilities_tab
from library.class_sample_images import SampleImages, run_cmd_sample
from library.custom_logging import setup_logging
# Set up logging
log = setup_logging()
# Setup command executor
executor = CommandExecutor()
def save_configuration(
save_as,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
cache_latents_to_disk,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
full_bf16,
no_token_padding,
stop_text_encoder_training,
min_bucket_reso,
max_bucket_reso,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
clip_skip,
vae,
output_name,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
mem_eff_attn,
gradient_accumulation_steps,
model_list,
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
noise_offset_type,
noise_offset,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
use_wandb,
wandb_api_key,
scale_v_pred_loss_like_noise_pred,
min_timestep,
max_timestep,
):
# Get list of function parameters and values
parameters = list(locals().items())
original_file_path = file_path
save_as_bool = True if save_as.get('label') == 'True' else False
if save_as_bool:
log.info('Save as...')
file_path = get_saveasfile_path(file_path)
else:
log.info('Save...')
if file_path == None or file_path == '':
file_path = get_saveasfile_path(file_path)
if file_path == None or file_path == '':
return original_file_path # In case a file_path was provided and the user decide to cancel the open action
# Extract the destination directory from the file path
destination_directory = os.path.dirname(file_path)
# Create the destination directory if it doesn't exist
if not os.path.exists(destination_directory):
os.makedirs(destination_directory)
SaveConfigFile(parameters=parameters, file_path=file_path, exclusion=['file_path', 'save_as'])
return file_path
def open_configuration(
ask_for_file,
file_path,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
cache_latents_to_disk,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
full_bf16,
no_token_padding,
stop_text_encoder_training,
min_bucket_reso,
max_bucket_reso,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
clip_skip,
vae,
output_name,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
mem_eff_attn,
gradient_accumulation_steps,
model_list,
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
noise_offset_type,
noise_offset,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
use_wandb,
wandb_api_key,
scale_v_pred_loss_like_noise_pred,
min_timestep,
max_timestep,
):
# Get list of function parameters and values
parameters = list(locals().items())
ask_for_file = True if ask_for_file.get('label') == 'True' else False
original_file_path = file_path
if ask_for_file:
file_path = get_file_path(file_path)
if not file_path == '' and not file_path == None:
# load variables from JSON file
with open(file_path, 'r') as f:
my_data = json.load(f)
log.info('Loading config...')
# Update values to fix deprecated use_8bit_adam checkbox and set appropriate optimizer if it is set to True
my_data = update_my_data(my_data)
else:
file_path = original_file_path # In case a file_path was provided and the user decide to cancel the open action
my_data = {}
values = [file_path]
for key, value in parameters:
# Set the value in the dictionary to the corresponding value in `my_data`, or the default value if not found
if not key in ['ask_for_file', 'file_path']:
values.append(my_data.get(key, value))
return tuple(values)
def train_model(
headless,
print_only,
pretrained_model_name_or_path,
v2,
v_parameterization,
sdxl,
logging_dir,
train_data_dir,
reg_data_dir,
output_dir,
max_resolution,
learning_rate,
lr_scheduler,
lr_warmup,
train_batch_size,
epoch,
save_every_n_epochs,
mixed_precision,
save_precision,
seed,
num_cpu_threads_per_process,
cache_latents,
cache_latents_to_disk,
caption_extension,
enable_bucket,
gradient_checkpointing,
full_fp16,
full_bf16,
no_token_padding,
stop_text_encoder_training_pct,
min_bucket_reso,
max_bucket_reso,
# use_8bit_adam,
xformers,
save_model_as,
shuffle_caption,
save_state,
resume,
prior_loss_weight,
color_aug,
flip_aug,
clip_skip,
vae,
output_name,
max_token_length,
max_train_epochs,
max_data_loader_n_workers,
mem_eff_attn,
gradient_accumulation_steps,
model_list, # Keep this. Yes, it is unused here but required given the common list used
keep_tokens,
lr_scheduler_num_cycles,
lr_scheduler_power,
persistent_data_loader_workers,
bucket_no_upscale,
random_crop,
bucket_reso_steps,
caption_dropout_every_n_epochs,
caption_dropout_rate,
optimizer,
optimizer_args,
noise_offset_type,
noise_offset,
adaptive_noise_scale,
multires_noise_iterations,
multires_noise_discount,
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
additional_parameters,
vae_batch_size,
min_snr_gamma,
weighted_captions,
save_every_n_steps,
save_last_n_steps,
save_last_n_steps_state,
use_wandb,
wandb_api_key,
scale_v_pred_loss_like_noise_pred,
min_timestep,
max_timestep,
):
# Get list of function parameters and values
parameters = list(locals().items())
print_only_bool = True if print_only.get('label') == 'True' else False
log.info(f'Start training Dreambooth...')
headless_bool = True if headless.get('label') == 'True' else False
if pretrained_model_name_or_path == '':
output_message(
msg='Source model information is missing', headless=headless_bool
)
return
if train_data_dir == '':
output_message(
msg='Image folder path is missing', headless=headless_bool
)
return
if not os.path.exists(train_data_dir):
output_message(
msg='Image folder does not exist', headless=headless_bool
)
return
if not verify_image_folder_pattern(train_data_dir):
return
if reg_data_dir != '':
if not os.path.exists(reg_data_dir):
output_message(
msg='Regularisation folder does not exist',
headless=headless_bool,
)
return
if not verify_image_folder_pattern(reg_data_dir):
return
if output_dir == '':
output_message(
msg='Output folder path is missing', headless=headless_bool
)
return
if check_if_model_exist(
output_name, output_dir, save_model_as, headless=headless_bool
):
return
# if sdxl:
# output_message(
# msg='Dreambooth training is not compatible with SDXL models yet..',
# headless=headless_bool,
# )
# return
# if optimizer == 'Adafactor' and lr_warmup != '0':
# output_message(
# msg="Warning: lr_scheduler is set to 'Adafactor', so 'LR warmup (% of steps)' will be considered 0.",
# title='Warning',
# headless=headless_bool,
# )
# lr_warmup = '0'
# Get a list of all subfolders in train_data_dir, excluding hidden folders
subfolders = [
f
for f in os.listdir(train_data_dir)
if os.path.isdir(os.path.join(train_data_dir, f))
and not f.startswith('.')
]
# Check if subfolders are present. If not let the user know and return
if not subfolders:
log.info(
f"No {subfolders} were found in train_data_dir can't train..."
)
return
total_steps = 0
# Loop through each subfolder and extract the number of repeats
for folder in subfolders:
# Extract the number of repeats from the folder name
try:
repeats = int(folder.split('_')[0])
except ValueError:
log.info(
f"Subfolder {folder} does not have a proper repeat value, please correct the name or remove it... can't train..."
)
continue
# Count the number of images in the folder
num_images = len(
[
f
for f, lower_f in (
(file, file.lower())
for file in os.listdir(
os.path.join(train_data_dir, folder)
)
)
if lower_f.endswith(('.jpg', '.jpeg', '.png', '.webp'))
]
)
if num_images == 0:
log.info(f'{folder} folder contain no images, skipping...')
else:
# Calculate the total number of steps for this folder
steps = repeats * num_images
total_steps += steps
# Print the result
log.info(f'Folder {folder} : steps {steps}')
if total_steps == 0:
log.info(
f'No images were found in folder {train_data_dir}... please rectify!'
)
return
# Print the result
# log.info(f"{total_steps} total steps")
if reg_data_dir == '':
reg_factor = 1
else:
log.info(
f'Regularisation images are used... Will double the number of steps required...'
)
reg_factor = 2
# calculate max_train_steps
max_train_steps = int(
math.ceil(
float(total_steps)
/ int(train_batch_size)
/ int(gradient_accumulation_steps)
* int(epoch)
* int(reg_factor)
)
)
log.info(f'max_train_steps = {max_train_steps}')
# calculate stop encoder training
if int(stop_text_encoder_training_pct) == -1:
stop_text_encoder_training = -1
elif stop_text_encoder_training_pct == None:
stop_text_encoder_training = 0
else:
stop_text_encoder_training = math.ceil(
float(max_train_steps) / 100 * int(stop_text_encoder_training_pct)
)
log.info(f'stop_text_encoder_training = {stop_text_encoder_training}')
lr_warmup_steps = round(float(int(lr_warmup) * int(max_train_steps) / 100))
log.info(f'lr_warmup_steps = {lr_warmup_steps}')
# run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process} "train_db.py"'
run_cmd = f'accelerate launch --num_cpu_threads_per_process={num_cpu_threads_per_process}'
if sdxl:
run_cmd += f' "./sdxl_train.py"'
else:
run_cmd += f' "./train_db.py"'
if v2:
run_cmd += ' --v2'
if v_parameterization:
run_cmd += ' --v_parameterization'
if enable_bucket:
run_cmd += f' --enable_bucket --min_bucket_reso={min_bucket_reso} --max_bucket_reso={max_bucket_reso}'
if no_token_padding:
run_cmd += ' --no_token_padding'
if weighted_captions:
run_cmd += ' --weighted_captions'
run_cmd += (
f' --pretrained_model_name_or_path="{pretrained_model_name_or_path}"'
)
run_cmd += f' --train_data_dir="{train_data_dir}"'
if len(reg_data_dir):
run_cmd += f' --reg_data_dir="{reg_data_dir}"'
run_cmd += f' --resolution="{max_resolution}"'
run_cmd += f' --output_dir="{output_dir}"'
if not logging_dir == '':
run_cmd += f' --logging_dir="{logging_dir}"'
if not stop_text_encoder_training == 0:
run_cmd += (
f' --stop_text_encoder_training={stop_text_encoder_training}'
)
if not save_model_as == 'same as source model':
run_cmd += f' --save_model_as={save_model_as}'
# if not resume == '':
# run_cmd += f' --resume={resume}'
if not float(prior_loss_weight) == 1.0:
run_cmd += f' --prior_loss_weight={prior_loss_weight}'
if full_bf16:
run_cmd += ' --full_bf16'
if not vae == '':
run_cmd += f' --vae="{vae}"'
if not output_name == '':
run_cmd += f' --output_name="{output_name}"'
if not lr_scheduler_num_cycles == '':
run_cmd += f' --lr_scheduler_num_cycles="{lr_scheduler_num_cycles}"'
else:
run_cmd += f' --lr_scheduler_num_cycles="{epoch}"'
if not lr_scheduler_power == '':
run_cmd += f' --lr_scheduler_power="{lr_scheduler_power}"'
if int(max_token_length) > 75:
run_cmd += f' --max_token_length={max_token_length}'
if not max_train_epochs == '':
run_cmd += f' --max_train_epochs="{max_train_epochs}"'
if not max_data_loader_n_workers == '':
run_cmd += (
f' --max_data_loader_n_workers="{max_data_loader_n_workers}"'
)
if int(gradient_accumulation_steps) > 1:
run_cmd += f' --gradient_accumulation_steps={int(gradient_accumulation_steps)}'
run_cmd += run_cmd_training(
learning_rate=learning_rate,
lr_scheduler=lr_scheduler,
lr_warmup_steps=lr_warmup_steps,
train_batch_size=train_batch_size,
max_train_steps=max_train_steps,
save_every_n_epochs=save_every_n_epochs,
mixed_precision=mixed_precision,
save_precision=save_precision,
seed=seed,
caption_extension=caption_extension,
cache_latents=cache_latents,
cache_latents_to_disk=cache_latents_to_disk,
optimizer=optimizer,
optimizer_args=optimizer_args,
)
run_cmd += run_cmd_advanced_training(
max_train_epochs=max_train_epochs,
max_data_loader_n_workers=max_data_loader_n_workers,
max_token_length=max_token_length,
resume=resume,
save_state=save_state,
mem_eff_attn=mem_eff_attn,
clip_skip=clip_skip,
flip_aug=flip_aug,
color_aug=color_aug,
shuffle_caption=shuffle_caption,
gradient_checkpointing=gradient_checkpointing,
full_fp16=full_fp16,
xformers=xformers,
keep_tokens=keep_tokens,
persistent_data_loader_workers=persistent_data_loader_workers,
bucket_no_upscale=bucket_no_upscale,
random_crop=random_crop,
bucket_reso_steps=bucket_reso_steps,
caption_dropout_every_n_epochs=caption_dropout_every_n_epochs,
caption_dropout_rate=caption_dropout_rate,
noise_offset_type=noise_offset_type,
noise_offset=noise_offset,
adaptive_noise_scale=adaptive_noise_scale,
multires_noise_iterations=multires_noise_iterations,
multires_noise_discount=multires_noise_discount,
additional_parameters=additional_parameters,
vae_batch_size=vae_batch_size,
min_snr_gamma=min_snr_gamma,
save_every_n_steps=save_every_n_steps,
save_last_n_steps=save_last_n_steps,
save_last_n_steps_state=save_last_n_steps_state,
use_wandb=use_wandb,
wandb_api_key=wandb_api_key,
scale_v_pred_loss_like_noise_pred=scale_v_pred_loss_like_noise_pred,
min_timestep=min_timestep,
max_timestep=max_timestep,
)
run_cmd += run_cmd_sample(
sample_every_n_steps,
sample_every_n_epochs,
sample_sampler,
sample_prompts,
output_dir,
)
if print_only_bool:
log.warning(
'Here is the trainer command as a reference. It will not be executed:\n'
)
print(run_cmd)
save_to_file(run_cmd)
else:
# Saving config file for model
current_datetime = datetime.now()
formatted_datetime = current_datetime.strftime("%Y%m%d-%H%M%S")
file_path = os.path.join(output_dir, f'{output_name}_{formatted_datetime}.json')
log.info(f'Saving training config to {file_path}...')
SaveConfigFile(parameters=parameters, file_path=file_path, exclusion=['file_path', 'save_as', 'headless', 'print_only'])
log.info(run_cmd)
# Run the command
executor.execute_command(run_cmd=run_cmd)
# check if output_dir/last is a folder... therefore it is a diffuser model
last_dir = pathlib.Path(f'{output_dir}/{output_name}')
if not last_dir.is_dir():
# Copy inference model for v2 if required
save_inference_file(
output_dir, v2, v_parameterization, output_name
)
def dreambooth_tab(
# train_data_dir=gr.Textbox(),
# reg_data_dir=gr.Textbox(),
# output_dir=gr.Textbox(),
# logging_dir=gr.Textbox(),
headless=False,
):
dummy_db_true = gr.Label(value=True, visible=False)
dummy_db_false = gr.Label(value=False, visible=False)
dummy_headless = gr.Label(value=headless, visible=False)
with gr.Tab('Training'):
gr.Markdown('Train a custom model using kohya dreambooth python code...')
# Setup Configuration Files Gradio
config = ConfigurationFile(headless)
source_model = SourceModel(headless=headless)
with gr.Tab('Folders'):
folders = Folders(headless=headless)
with gr.Tab('Parameters'):
with gr.Tab('Basic', elem_id='basic_tab'):
basic_training = BasicTraining(
learning_rate_value='1e-5',
lr_scheduler_value='cosine',
lr_warmup_value='10',
)
# # Add SDXL Parameters
# sdxl_params = SDXLParameters(source_model.sdxl_checkbox, show_sdxl_cache_text_encoder_outputs=False)
with gr.Tab('Advanced', elem_id='advanced_tab'):
advanced_training = AdvancedTraining(headless=headless)
advanced_training.color_aug.change(
color_aug_changed,
inputs=[advanced_training.color_aug],
outputs=[basic_training.cache_latents],
)
with gr.Tab('Samples', elem_id='samples_tab'):
sample = SampleImages()
with gr.Tab('Tools'):
gr.Markdown(
'This section provide Dreambooth tools to help setup your dataset...'
)
gradio_dreambooth_folder_creation_tab(
train_data_dir_input=folders.train_data_dir,
reg_data_dir_input=folders.reg_data_dir,
output_dir_input=folders.output_dir,
logging_dir_input=folders.logging_dir,
headless=headless,
)
with gr.Row():
button_run = gr.Button('Start training', variant='primary')
button_stop_training = gr.Button('Stop training')
button_print = gr.Button('Print training command')
# Setup gradio tensorboard buttons
button_start_tensorboard, button_stop_tensorboard = gradio_tensorboard()
button_start_tensorboard.click(
start_tensorboard,
inputs=folders.logging_dir,
show_progress=False,
)
button_stop_tensorboard.click(
stop_tensorboard,
show_progress=False,
)
settings_list = [
source_model.pretrained_model_name_or_path,
source_model.v2,
source_model.v_parameterization,
source_model.sdxl_checkbox,
folders.logging_dir,
folders.train_data_dir,
folders.reg_data_dir,
folders.output_dir,
basic_training.max_resolution,
basic_training.learning_rate,
basic_training.lr_scheduler,
basic_training.lr_warmup,
basic_training.train_batch_size,
basic_training.epoch,
basic_training.save_every_n_epochs,
basic_training.mixed_precision,
basic_training.save_precision,
basic_training.seed,
basic_training.num_cpu_threads_per_process,
basic_training.cache_latents,
basic_training.cache_latents_to_disk,
basic_training.caption_extension,
basic_training.enable_bucket,
advanced_training.gradient_checkpointing,
advanced_training.full_fp16,
advanced_training.full_bf16,
advanced_training.no_token_padding,
basic_training.stop_text_encoder_training,
basic_training.min_bucket_reso,
basic_training.max_bucket_reso,
advanced_training.xformers,
source_model.save_model_as,
advanced_training.shuffle_caption,
advanced_training.save_state,
advanced_training.resume,
advanced_training.prior_loss_weight,
advanced_training.color_aug,
advanced_training.flip_aug,
advanced_training.clip_skip,
advanced_training.vae,
folders.output_name,
advanced_training.max_token_length,
basic_training.max_train_epochs,
advanced_training.max_data_loader_n_workers,
advanced_training.mem_eff_attn,
advanced_training.gradient_accumulation_steps,
source_model.model_list,
advanced_training.keep_tokens,
basic_training.lr_scheduler_num_cycles,
basic_training.lr_scheduler_power,
advanced_training.persistent_data_loader_workers,
advanced_training.bucket_no_upscale,
advanced_training.random_crop,
advanced_training.bucket_reso_steps,
advanced_training.caption_dropout_every_n_epochs,
advanced_training.caption_dropout_rate,
basic_training.optimizer,
basic_training.optimizer_args,
advanced_training.noise_offset_type,
advanced_training.noise_offset,
advanced_training.adaptive_noise_scale,
advanced_training.multires_noise_iterations,
advanced_training.multires_noise_discount,
sample.sample_every_n_steps,
sample.sample_every_n_epochs,
sample.sample_sampler,
sample.sample_prompts,
advanced_training.additional_parameters,
advanced_training.vae_batch_size,
advanced_training.min_snr_gamma,
advanced_training.weighted_captions,
advanced_training.save_every_n_steps,
advanced_training.save_last_n_steps,
advanced_training.save_last_n_steps_state,
advanced_training.use_wandb,
advanced_training.wandb_api_key,
advanced_training.scale_v_pred_loss_like_noise_pred,
advanced_training.min_timestep,
advanced_training.max_timestep,
]
config.button_open_config.click(
open_configuration,
inputs=[dummy_db_true, config.config_file_name] + settings_list,
outputs=[config.config_file_name] + settings_list,
show_progress=False,
)
config.button_load_config.click(
open_configuration,
inputs=[dummy_db_false, config.config_file_name] + settings_list,
outputs=[config.config_file_name] + settings_list,
show_progress=False,
)
config.button_save_config.click(
save_configuration,
inputs=[dummy_db_false, config.config_file_name] + settings_list,
outputs=[config.config_file_name],
show_progress=False,
)
config.button_save_as_config.click(
save_configuration,
inputs=[dummy_db_true, config.config_file_name] + settings_list,
outputs=[config.config_file_name],
show_progress=False,
)
button_run.click(
train_model,
inputs=[dummy_headless] + [dummy_db_false] + settings_list,
show_progress=False,
)
button_stop_training.click(
executor.kill_command
)
button_print.click(
train_model,
inputs=[dummy_headless] + [dummy_db_true] + settings_list,
show_progress=False,
)
return (
folders.train_data_dir,
folders.reg_data_dir,
folders.output_dir,
folders.logging_dir,
)
def UI(**kwargs):
css = ''
headless = kwargs.get('headless', False)
log.info(f'headless: {headless}')
if os.path.exists('./style.css'):
with open(os.path.join('./style.css'), 'r', encoding='utf8') as file:
log.info('Load CSS...')
css += file.read() + '\n'
interface = gr.Blocks(
css=css, title='Kohya_ss GUI', theme=gr.themes.Default()
)
with interface:
with gr.Tab('Dreambooth'):
(
train_data_dir_input,
reg_data_dir_input,
output_dir_input,
logging_dir_input,
) = dreambooth_tab(headless=headless)
with gr.Tab('Utilities'):
utilities_tab(
train_data_dir_input=train_data_dir_input,
reg_data_dir_input=reg_data_dir_input,
output_dir_input=output_dir_input,
logging_dir_input=logging_dir_input,
enable_copy_info_button=True,
headless=headless,
)
# Show the interface
launch_kwargs = {}
username = kwargs.get('username')
password = kwargs.get('password')
server_port = kwargs.get('server_port', 0)
inbrowser = kwargs.get('inbrowser', False)
share = kwargs.get('share', False)
server_name = kwargs.get('listen')
launch_kwargs['server_name'] = server_name
if username and password:
launch_kwargs['auth'] = (username, password)
if server_port > 0:
launch_kwargs['server_port'] = server_port
if inbrowser:
launch_kwargs['inbrowser'] = inbrowser
if share:
launch_kwargs['share'] = share
interface.launch(**launch_kwargs)
if __name__ == '__main__':
# torch.cuda.set_per_process_memory_fraction(0.48)
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
parser.add_argument(
'--headless', action='store_true', help='Is the server headless'
)
args = parser.parse_args()
UI(
username=args.username,
password=args.password,
inbrowser=args.inbrowser,
server_port=args.server_port,
share=args.share,
listen=args.listen,
headless=args.headless,
)
|