File size: 4,403 Bytes
2fdce3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
from easygui import msgbox
import subprocess
import os
from .common_gui import get_folder_path, add_pre_postfix
from library.custom_logging import setup_logging
# Set up logging
log = setup_logging()
PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe'
def caption_images(
train_data_dir,
caption_file_ext,
batch_size,
num_beams,
top_p,
max_length,
min_length,
beam_search,
prefix,
postfix,
):
# Check if the image folder is provided
if train_data_dir == '':
msgbox('Image folder is missing...')
return
# Check if the caption file extension is provided
if caption_file_ext == '':
msgbox('Please provide an extension for the caption files.')
return
log.info(f'Captioning files in {train_data_dir}...')
# Construct the command to run
run_cmd = f'{PYTHON} "finetune/make_captions.py"'
run_cmd += f' --batch_size="{int(batch_size)}"'
run_cmd += f' --num_beams="{int(num_beams)}"'
run_cmd += f' --top_p="{top_p}"'
run_cmd += f' --max_length="{int(max_length)}"'
run_cmd += f' --min_length="{int(min_length)}"'
if beam_search:
run_cmd += f' --beam_search'
if caption_file_ext != '':
run_cmd += f' --caption_extension="{caption_file_ext}"'
run_cmd += f' "{train_data_dir}"'
run_cmd += f' --caption_weights="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth"'
log.info(run_cmd)
# Run the command
if os.name == 'posix':
os.system(run_cmd)
else:
subprocess.run(run_cmd)
# Add prefix and postfix
add_pre_postfix(
folder=train_data_dir,
caption_file_ext=caption_file_ext,
prefix=prefix,
postfix=postfix,
)
log.info('...captioning done')
###
# Gradio UI
###
def gradio_blip_caption_gui_tab(headless=False):
with gr.Tab('BLIP Captioning'):
gr.Markdown(
'This utility uses BLIP to caption files for each image in a folder.'
)
with gr.Row():
train_data_dir = gr.Textbox(
label='Image folder to caption',
placeholder='Directory containing the images to caption',
interactive=True,
)
button_train_data_dir_input = gr.Button(
'📂', elem_id='open_folder_small', visible=(not headless)
)
button_train_data_dir_input.click(
get_folder_path,
outputs=train_data_dir,
show_progress=False,
)
with gr.Row():
caption_file_ext = gr.Textbox(
label='Caption file extension',
placeholder='Extension for caption file, e.g., .caption, .txt',
value='.txt',
interactive=True,
)
prefix = gr.Textbox(
label='Prefix to add to BLIP caption',
placeholder='(Optional)',
interactive=True,
)
postfix = gr.Textbox(
label='Postfix to add to BLIP caption',
placeholder='(Optional)',
interactive=True,
)
batch_size = gr.Number(
value=1, label='Batch size', interactive=True
)
with gr.Row():
beam_search = gr.Checkbox(
label='Use beam search', interactive=True, value=True
)
num_beams = gr.Number(
value=1, label='Number of beams', interactive=True
)
top_p = gr.Number(value=0.9, label='Top p', interactive=True)
max_length = gr.Number(
value=75, label='Max length', interactive=True
)
min_length = gr.Number(
value=5, label='Min length', interactive=True
)
caption_button = gr.Button('Caption images')
caption_button.click(
caption_images,
inputs=[
train_data_dir,
caption_file_ext,
batch_size,
num_beams,
top_p,
max_length,
min_length,
beam_search,
prefix,
postfix,
],
show_progress=False,
)
|