File size: 21,729 Bytes
2fdce3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import torch
from accelerate import init_empty_weights
from accelerate.utils.modeling import set_module_tensor_to_device
from safetensors.torch import load_file, save_file
from transformers import CLIPTextModel, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from typing import List
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
from library import model_util
from library import sdxl_original_unet


VAE_SCALE_FACTOR = 0.13025
MODEL_VERSION_SDXL_BASE_V1_0 = "sdxl_base_v1-0"

# Diffusersの設定を読み込むための参照モデル
DIFFUSERS_REF_MODEL_ID_SDXL = "stabilityai/stable-diffusion-xl-base-1.0"

DIFFUSERS_SDXL_UNET_CONFIG = {
    "act_fn": "silu",
    "addition_embed_type": "text_time",
    "addition_embed_type_num_heads": 64,
    "addition_time_embed_dim": 256,
    "attention_head_dim": [5, 10, 20],
    "block_out_channels": [320, 640, 1280],
    "center_input_sample": False,
    "class_embed_type": None,
    "class_embeddings_concat": False,
    "conv_in_kernel": 3,
    "conv_out_kernel": 3,
    "cross_attention_dim": 2048,
    "cross_attention_norm": None,
    "down_block_types": ["DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"],
    "downsample_padding": 1,
    "dual_cross_attention": False,
    "encoder_hid_dim": None,
    "encoder_hid_dim_type": None,
    "flip_sin_to_cos": True,
    "freq_shift": 0,
    "in_channels": 4,
    "layers_per_block": 2,
    "mid_block_only_cross_attention": None,
    "mid_block_scale_factor": 1,
    "mid_block_type": "UNetMidBlock2DCrossAttn",
    "norm_eps": 1e-05,
    "norm_num_groups": 32,
    "num_attention_heads": None,
    "num_class_embeds": None,
    "only_cross_attention": False,
    "out_channels": 4,
    "projection_class_embeddings_input_dim": 2816,
    "resnet_out_scale_factor": 1.0,
    "resnet_skip_time_act": False,
    "resnet_time_scale_shift": "default",
    "sample_size": 128,
    "time_cond_proj_dim": None,
    "time_embedding_act_fn": None,
    "time_embedding_dim": None,
    "time_embedding_type": "positional",
    "timestep_post_act": None,
    "transformer_layers_per_block": [1, 2, 10],
    "up_block_types": ["CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"],
    "upcast_attention": False,
    "use_linear_projection": True,
}


def convert_sdxl_text_encoder_2_checkpoint(checkpoint, max_length):
    SDXL_KEY_PREFIX = "conditioner.embedders.1.model."

    # SD2のと、基本的には同じ。logit_scaleを後で使うので、それを追加で返す
    # logit_scaleはcheckpointの保存時に使用する
    def convert_key(key):
        # common conversion
        key = key.replace(SDXL_KEY_PREFIX + "transformer.", "text_model.encoder.")
        key = key.replace(SDXL_KEY_PREFIX, "text_model.")

        if "resblocks" in key:
            # resblocks conversion
            key = key.replace(".resblocks.", ".layers.")
            if ".ln_" in key:
                key = key.replace(".ln_", ".layer_norm")
            elif ".mlp." in key:
                key = key.replace(".c_fc.", ".fc1.")
                key = key.replace(".c_proj.", ".fc2.")
            elif ".attn.out_proj" in key:
                key = key.replace(".attn.out_proj.", ".self_attn.out_proj.")
            elif ".attn.in_proj" in key:
                key = None  # 特殊なので後で処理する
            else:
                raise ValueError(f"unexpected key in SD: {key}")
        elif ".positional_embedding" in key:
            key = key.replace(".positional_embedding", ".embeddings.position_embedding.weight")
        elif ".text_projection" in key:
            key = key.replace("text_model.text_projection", "text_projection.weight")
        elif ".logit_scale" in key:
            key = None  # 後で処理する
        elif ".token_embedding" in key:
            key = key.replace(".token_embedding.weight", ".embeddings.token_embedding.weight")
        elif ".ln_final" in key:
            key = key.replace(".ln_final", ".final_layer_norm")
        # ckpt from comfy has this key: text_model.encoder.text_model.embeddings.position_ids
        elif ".embeddings.position_ids" in key:
            key = None  # remove this key: make position_ids by ourselves
        return key

    keys = list(checkpoint.keys())
    new_sd = {}
    for key in keys:
        new_key = convert_key(key)
        if new_key is None:
            continue
        new_sd[new_key] = checkpoint[key]

    # attnの変換
    for key in keys:
        if ".resblocks" in key and ".attn.in_proj_" in key:
            # 三つに分割
            values = torch.chunk(checkpoint[key], 3)

            key_suffix = ".weight" if "weight" in key else ".bias"
            key_pfx = key.replace(SDXL_KEY_PREFIX + "transformer.resblocks.", "text_model.encoder.layers.")
            key_pfx = key_pfx.replace("_weight", "")
            key_pfx = key_pfx.replace("_bias", "")
            key_pfx = key_pfx.replace(".attn.in_proj", ".self_attn.")
            new_sd[key_pfx + "q_proj" + key_suffix] = values[0]
            new_sd[key_pfx + "k_proj" + key_suffix] = values[1]
            new_sd[key_pfx + "v_proj" + key_suffix] = values[2]

    # original SD にはないので、position_idsを追加
    position_ids = torch.Tensor([list(range(max_length))]).to(torch.int64)
    new_sd["text_model.embeddings.position_ids"] = position_ids

    # logit_scale はDiffusersには含まれないが、保存時に戻したいので別途返す
    logit_scale = checkpoint.get(SDXL_KEY_PREFIX + "logit_scale", None)

    return new_sd, logit_scale


# load state_dict without allocating new tensors
def _load_state_dict_on_device(model, state_dict, device, dtype=None):
    # dtype will use fp32 as default
    missing_keys = list(model.state_dict().keys() - state_dict.keys())
    unexpected_keys = list(state_dict.keys() - model.state_dict().keys())

    # similar to model.load_state_dict()
    if not missing_keys and not unexpected_keys:
        for k in list(state_dict.keys()):
            set_module_tensor_to_device(model, k, device, value=state_dict.pop(k), dtype=dtype)
        return "<All keys matched successfully>"

    # error_msgs
    error_msgs: List[str] = []
    if missing_keys:
        error_msgs.insert(0, "Missing key(s) in state_dict: {}. ".format(", ".join('"{}"'.format(k) for k in missing_keys)))
    if unexpected_keys:
        error_msgs.insert(0, "Unexpected key(s) in state_dict: {}. ".format(", ".join('"{}"'.format(k) for k in unexpected_keys)))

    raise RuntimeError("Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs)))


def load_models_from_sdxl_checkpoint(model_version, ckpt_path, map_location, dtype=None):
    # model_version is reserved for future use
    # dtype is reserved for full_fp16/bf16 integration. Text Encoder will remain fp32, because it runs on CPU when caching

    # Load the state dict
    if model_util.is_safetensors(ckpt_path):
        checkpoint = None
        try:
            state_dict = load_file(ckpt_path, device=map_location)
        except:
            state_dict = load_file(ckpt_path)  # prevent device invalid Error
        epoch = None
        global_step = None
    else:
        checkpoint = torch.load(ckpt_path, map_location=map_location)
        if "state_dict" in checkpoint:
            state_dict = checkpoint["state_dict"]
            epoch = checkpoint.get("epoch", 0)
            global_step = checkpoint.get("global_step", 0)
        else:
            state_dict = checkpoint
            epoch = 0
            global_step = 0
        checkpoint = None

    # U-Net
    print("building U-Net")
    with init_empty_weights():
        unet = sdxl_original_unet.SdxlUNet2DConditionModel()

    print("loading U-Net from checkpoint")
    unet_sd = {}
    for k in list(state_dict.keys()):
        if k.startswith("model.diffusion_model."):
            unet_sd[k.replace("model.diffusion_model.", "")] = state_dict.pop(k)
    info = _load_state_dict_on_device(unet, unet_sd, device=map_location)
    print("U-Net: ", info)

    # Text Encoders
    print("building text encoders")

    # Text Encoder 1 is same to Stability AI's SDXL
    text_model1_cfg = CLIPTextConfig(
        vocab_size=49408,
        hidden_size=768,
        intermediate_size=3072,
        num_hidden_layers=12,
        num_attention_heads=12,
        max_position_embeddings=77,
        hidden_act="quick_gelu",
        layer_norm_eps=1e-05,
        dropout=0.0,
        attention_dropout=0.0,
        initializer_range=0.02,
        initializer_factor=1.0,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        model_type="clip_text_model",
        projection_dim=768,
        # torch_dtype="float32",
        # transformers_version="4.25.0.dev0",
    )
    text_model1 = CLIPTextModel._from_config(text_model1_cfg)

    # Text Encoder 2 is different from Stability AI's SDXL. SDXL uses open clip, but we use the model from HuggingFace.
    # Note: Tokenizer from HuggingFace is different from SDXL. We must use open clip's tokenizer.
    text_model2_cfg = CLIPTextConfig(
        vocab_size=49408,
        hidden_size=1280,
        intermediate_size=5120,
        num_hidden_layers=32,
        num_attention_heads=20,
        max_position_embeddings=77,
        hidden_act="gelu",
        layer_norm_eps=1e-05,
        dropout=0.0,
        attention_dropout=0.0,
        initializer_range=0.02,
        initializer_factor=1.0,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        model_type="clip_text_model",
        projection_dim=1280,
        # torch_dtype="float32",
        # transformers_version="4.25.0.dev0",
    )
    text_model2 = CLIPTextModelWithProjection(text_model2_cfg)

    print("loading text encoders from checkpoint")
    te1_sd = {}
    te2_sd = {}
    for k in list(state_dict.keys()):
        if k.startswith("conditioner.embedders.0.transformer."):
            te1_sd[k.replace("conditioner.embedders.0.transformer.", "")] = state_dict.pop(k)
        elif k.startswith("conditioner.embedders.1.model."):
            te2_sd[k] = state_dict.pop(k)

    info1 = text_model1.load_state_dict(te1_sd)
    print("text encoder 1:", info1)

    converted_sd, logit_scale = convert_sdxl_text_encoder_2_checkpoint(te2_sd, max_length=77)
    info2 = text_model2.load_state_dict(converted_sd)
    print("text encoder 2:", info2)

    # prepare vae
    print("building VAE")
    vae_config = model_util.create_vae_diffusers_config()
    vae = AutoencoderKL(**vae_config)  # .to(device)

    print("loading VAE from checkpoint")
    converted_vae_checkpoint = model_util.convert_ldm_vae_checkpoint(state_dict, vae_config)
    info = vae.load_state_dict(converted_vae_checkpoint)
    print("VAE:", info)

    ckpt_info = (epoch, global_step) if epoch is not None else None
    return text_model1, text_model2, vae, unet, logit_scale, ckpt_info


def make_unet_conversion_map():
    unet_conversion_map_layer = []

    for i in range(3):  # num_blocks is 3 in sdxl
        # loop over downblocks/upblocks
        for j in range(2):
            # loop over resnets/attentions for downblocks
            hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
            sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
            unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))

            if i < 3:
                # no attention layers in down_blocks.3
                hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
                sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
                unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))

        for j in range(3):
            # loop over resnets/attentions for upblocks
            hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
            sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
            unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))

            # if i > 0: commentout for sdxl
            # no attention layers in up_blocks.0
            hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
            sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
            unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))

        if i < 3:
            # no downsample in down_blocks.3
            hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
            sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
            unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))

            # no upsample in up_blocks.3
            hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
            sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}."  # change for sdxl
            unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))

    hf_mid_atn_prefix = "mid_block.attentions.0."
    sd_mid_atn_prefix = "middle_block.1."
    unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))

    for j in range(2):
        hf_mid_res_prefix = f"mid_block.resnets.{j}."
        sd_mid_res_prefix = f"middle_block.{2*j}."
        unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))

    unet_conversion_map_resnet = [
        # (stable-diffusion, HF Diffusers)
        ("in_layers.0.", "norm1."),
        ("in_layers.2.", "conv1."),
        ("out_layers.0.", "norm2."),
        ("out_layers.3.", "conv2."),
        ("emb_layers.1.", "time_emb_proj."),
        ("skip_connection.", "conv_shortcut."),
    ]

    unet_conversion_map = []
    for sd, hf in unet_conversion_map_layer:
        if "resnets" in hf:
            for sd_res, hf_res in unet_conversion_map_resnet:
                unet_conversion_map.append((sd + sd_res, hf + hf_res))
        else:
            unet_conversion_map.append((sd, hf))

    for j in range(2):
        hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
        sd_time_embed_prefix = f"time_embed.{j*2}."
        unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))

    for j in range(2):
        hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
        sd_label_embed_prefix = f"label_emb.0.{j*2}."
        unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))

    unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
    unet_conversion_map.append(("out.0.", "conv_norm_out."))
    unet_conversion_map.append(("out.2.", "conv_out."))

    return unet_conversion_map


def convert_diffusers_unet_state_dict_to_sdxl(du_sd):
    unet_conversion_map = make_unet_conversion_map()

    conversion_map = {hf: sd for sd, hf in unet_conversion_map}
    return convert_unet_state_dict(du_sd, conversion_map)


def convert_unet_state_dict(src_sd, conversion_map):
    converted_sd = {}
    for src_key, value in src_sd.items():
        # さすがに全部回すのは時間がかかるので右から要素を削りつつprefixを探す
        src_key_fragments = src_key.split(".")[:-1]  # remove weight/bias
        while len(src_key_fragments) > 0:
            src_key_prefix = ".".join(src_key_fragments) + "."
            if src_key_prefix in conversion_map:
                converted_prefix = conversion_map[src_key_prefix]
                converted_key = converted_prefix + src_key[len(src_key_prefix) :]
                converted_sd[converted_key] = value
                break
            src_key_fragments.pop(-1)
        assert len(src_key_fragments) > 0, f"key {src_key} not found in conversion map"

    return converted_sd


def convert_sdxl_unet_state_dict_to_diffusers(sd):
    unet_conversion_map = make_unet_conversion_map()

    conversion_dict = {sd: hf for sd, hf in unet_conversion_map}
    return convert_unet_state_dict(sd, conversion_dict)


def convert_text_encoder_2_state_dict_to_sdxl(checkpoint, logit_scale):
    def convert_key(key):
        # position_idsの除去
        if ".position_ids" in key:
            return None

        # common
        key = key.replace("text_model.encoder.", "transformer.")
        key = key.replace("text_model.", "")
        if "layers" in key:
            # resblocks conversion
            key = key.replace(".layers.", ".resblocks.")
            if ".layer_norm" in key:
                key = key.replace(".layer_norm", ".ln_")
            elif ".mlp." in key:
                key = key.replace(".fc1.", ".c_fc.")
                key = key.replace(".fc2.", ".c_proj.")
            elif ".self_attn.out_proj" in key:
                key = key.replace(".self_attn.out_proj.", ".attn.out_proj.")
            elif ".self_attn." in key:
                key = None  # 特殊なので後で処理する
            else:
                raise ValueError(f"unexpected key in DiffUsers model: {key}")
        elif ".position_embedding" in key:
            key = key.replace("embeddings.position_embedding.weight", "positional_embedding")
        elif ".token_embedding" in key:
            key = key.replace("embeddings.token_embedding.weight", "token_embedding.weight")
        elif "text_projection" in key:  # no dot in key
            key = key.replace("text_projection.weight", "text_projection")
        elif "final_layer_norm" in key:
            key = key.replace("final_layer_norm", "ln_final")
        return key

    keys = list(checkpoint.keys())
    new_sd = {}
    for key in keys:
        new_key = convert_key(key)
        if new_key is None:
            continue
        new_sd[new_key] = checkpoint[key]

    # attnの変換
    for key in keys:
        if "layers" in key and "q_proj" in key:
            # 三つを結合
            key_q = key
            key_k = key.replace("q_proj", "k_proj")
            key_v = key.replace("q_proj", "v_proj")

            value_q = checkpoint[key_q]
            value_k = checkpoint[key_k]
            value_v = checkpoint[key_v]
            value = torch.cat([value_q, value_k, value_v])

            new_key = key.replace("text_model.encoder.layers.", "transformer.resblocks.")
            new_key = new_key.replace(".self_attn.q_proj.", ".attn.in_proj_")
            new_sd[new_key] = value

    if logit_scale is not None:
        new_sd["logit_scale"] = logit_scale

    return new_sd


def save_stable_diffusion_checkpoint(
    output_file,
    text_encoder1,
    text_encoder2,
    unet,
    epochs,
    steps,
    ckpt_info,
    vae,
    logit_scale,
    metadata,
    save_dtype=None,
):
    state_dict = {}

    def update_sd(prefix, sd):
        for k, v in sd.items():
            key = prefix + k
            if save_dtype is not None:
                v = v.detach().clone().to("cpu").to(save_dtype)
            state_dict[key] = v

    # Convert the UNet model
    update_sd("model.diffusion_model.", unet.state_dict())

    # Convert the text encoders
    update_sd("conditioner.embedders.0.transformer.", text_encoder1.state_dict())

    text_enc2_dict = convert_text_encoder_2_state_dict_to_sdxl(text_encoder2.state_dict(), logit_scale)
    update_sd("conditioner.embedders.1.model.", text_enc2_dict)

    # Convert the VAE
    vae_dict = model_util.convert_vae_state_dict(vae.state_dict())
    update_sd("first_stage_model.", vae_dict)

    # Put together new checkpoint
    key_count = len(state_dict.keys())
    new_ckpt = {"state_dict": state_dict}

    # epoch and global_step are sometimes not int
    if ckpt_info is not None:
        epochs += ckpt_info[0]
        steps += ckpt_info[1]

    new_ckpt["epoch"] = epochs
    new_ckpt["global_step"] = steps

    if model_util.is_safetensors(output_file):
        save_file(state_dict, output_file, metadata)
    else:
        torch.save(new_ckpt, output_file)

    return key_count


def save_diffusers_checkpoint(
    output_dir, text_encoder1, text_encoder2, unet, pretrained_model_name_or_path, vae=None, use_safetensors=False, save_dtype=None
):
    from diffusers import StableDiffusionXLPipeline

    # convert U-Net
    unet_sd = unet.state_dict()
    du_unet_sd = convert_sdxl_unet_state_dict_to_diffusers(unet_sd)

    diffusers_unet = UNet2DConditionModel(**DIFFUSERS_SDXL_UNET_CONFIG)
    if save_dtype is not None:
        diffusers_unet.to(save_dtype)
    diffusers_unet.load_state_dict(du_unet_sd)

    # create pipeline to save
    if pretrained_model_name_or_path is None:
        pretrained_model_name_or_path = DIFFUSERS_REF_MODEL_ID_SDXL

    scheduler = EulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
    tokenizer1 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
    tokenizer2 = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer_2")
    if vae is None:
        vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")

    # prevent local path from being saved
    def remove_name_or_path(model):
        if hasattr(model, "config"):
            model.config._name_or_path = None
            model.config._name_or_path = None

    remove_name_or_path(diffusers_unet)
    remove_name_or_path(text_encoder1)
    remove_name_or_path(text_encoder2)
    remove_name_or_path(scheduler)
    remove_name_or_path(tokenizer1)
    remove_name_or_path(tokenizer2)
    remove_name_or_path(vae)

    pipeline = StableDiffusionXLPipeline(
        unet=diffusers_unet,
        text_encoder=text_encoder1,
        text_encoder_2=text_encoder2,
        vae=vae,
        scheduler=scheduler,
        tokenizer=tokenizer1,
        tokenizer_2=tokenizer2,
    )
    if save_dtype is not None:
        pipeline.to(None, save_dtype)
    pipeline.save_pretrained(output_dir, safe_serialization=use_safetensors)