File size: 12,822 Bytes
2fdce3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import argparse
import gc
import math
import os
from typing import Optional
import torch
from accelerate import init_empty_weights
from tqdm import tqdm
from transformers import CLIPTokenizer
from library import model_util, sdxl_model_util, train_util, sdxl_original_unet
from library.sdxl_lpw_stable_diffusion import SdxlStableDiffusionLongPromptWeightingPipeline

TOKENIZER1_PATH = "openai/clip-vit-large-patch14"
TOKENIZER2_PATH = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"

DEFAULT_NOISE_OFFSET = 0.0357


def load_target_model(args, accelerator, model_version: str, weight_dtype):
    # load models for each process
    for pi in range(accelerator.state.num_processes):
        if pi == accelerator.state.local_process_index:
            print(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}")

            (
                load_stable_diffusion_format,
                text_encoder1,
                text_encoder2,
                vae,
                unet,
                logit_scale,
                ckpt_info,
            ) = _load_target_model(
                args.pretrained_model_name_or_path,
                args.vae,
                model_version,
                weight_dtype,
                accelerator.device if args.lowram else "cpu",
            )

            # work on low-ram device
            if args.lowram:
                text_encoder1.to(accelerator.device)
                text_encoder2.to(accelerator.device)
                unet.to(accelerator.device)
                vae.to(accelerator.device)

            gc.collect()
            torch.cuda.empty_cache()
        accelerator.wait_for_everyone()

    text_encoder1, text_encoder2, unet = train_util.transform_models_if_DDP([text_encoder1, text_encoder2, unet])

    return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info


def _load_target_model(name_or_path: str, vae_path: Optional[str], model_version: str, weight_dtype, device="cpu"):
    name_or_path = os.readlink(name_or_path) if os.path.islink(name_or_path) else name_or_path
    load_stable_diffusion_format = os.path.isfile(name_or_path)  # determine SD or Diffusers

    if load_stable_diffusion_format:
        print(f"load StableDiffusion checkpoint: {name_or_path}")
        (
            text_encoder1,
            text_encoder2,
            vae,
            unet,
            logit_scale,
            ckpt_info,
        ) = sdxl_model_util.load_models_from_sdxl_checkpoint(model_version, name_or_path, device, weight_dtype)
    else:
        # Diffusers model is loaded to CPU
        from diffusers import StableDiffusionXLPipeline

        variant = "fp16" if weight_dtype == torch.float16 else None
        print(f"load Diffusers pretrained models: {name_or_path}, variant={variant}")
        try:
            try:
                pipe = StableDiffusionXLPipeline.from_pretrained(
                    name_or_path, torch_dtype=weight_dtype, variant=variant, tokenizer=None
                )
            except EnvironmentError as ex:
                if variant is not None:
                    print("try to load fp32 model")
                    pipe = StableDiffusionXLPipeline.from_pretrained(name_or_path, variant=None, tokenizer=None)
                else:
                    raise ex
        except EnvironmentError as ex:
            print(
                f"model is not found as a file or in Hugging Face, perhaps file name is wrong? / 指定したモデル名のファイル、またはHugging Faceのモデルが見つかりません。ファイル名が誤っているかもしれません: {name_or_path}"
            )
            raise ex

        text_encoder1 = pipe.text_encoder
        text_encoder2 = pipe.text_encoder_2
        vae = pipe.vae
        unet = pipe.unet
        del pipe

        # Diffusers U-Net to original U-Net
        state_dict = sdxl_model_util.convert_diffusers_unet_state_dict_to_sdxl(unet.state_dict())
        with init_empty_weights():
            unet = sdxl_original_unet.SdxlUNet2DConditionModel()  # overwrite unet
        sdxl_model_util._load_state_dict_on_device(unet, state_dict, device=device)
        print("U-Net converted to original U-Net")

        logit_scale = None
        ckpt_info = None

    # VAEを読み込む
    if vae_path is not None:
        vae = model_util.load_vae(vae_path, weight_dtype)
        print("additional VAE loaded")

    return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info


def load_tokenizers(args: argparse.Namespace):
    print("prepare tokenizers")

    original_paths = [TOKENIZER1_PATH, TOKENIZER2_PATH]
    tokeniers = []
    for i, original_path in enumerate(original_paths):
        tokenizer: CLIPTokenizer = None
        if args.tokenizer_cache_dir:
            local_tokenizer_path = os.path.join(args.tokenizer_cache_dir, original_path.replace("/", "_"))
            if os.path.exists(local_tokenizer_path):
                print(f"load tokenizer from cache: {local_tokenizer_path}")
                tokenizer = CLIPTokenizer.from_pretrained(local_tokenizer_path)

        if tokenizer is None:
            tokenizer = CLIPTokenizer.from_pretrained(original_path)

        if args.tokenizer_cache_dir and not os.path.exists(local_tokenizer_path):
            print(f"save Tokenizer to cache: {local_tokenizer_path}")
            tokenizer.save_pretrained(local_tokenizer_path)

        if i == 1:
            tokenizer.pad_token_id = 0  # fix pad token id to make same as open clip tokenizer

        tokeniers.append(tokenizer)

    if hasattr(args, "max_token_length") and args.max_token_length is not None:
        print(f"update token length: {args.max_token_length}")

    return tokeniers


def timestep_embedding(timesteps, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.
    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
        device=timesteps.device
    )
    args = timesteps[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


def get_timestep_embedding(x, outdim):
    assert len(x.shape) == 2
    b, dims = x.shape[0], x.shape[1]
    x = torch.flatten(x)
    emb = timestep_embedding(x, outdim)
    emb = torch.reshape(emb, (b, dims * outdim))
    return emb


def get_size_embeddings(orig_size, crop_size, target_size, device):
    emb1 = get_timestep_embedding(orig_size, 256)
    emb2 = get_timestep_embedding(crop_size, 256)
    emb3 = get_timestep_embedding(target_size, 256)
    vector = torch.cat([emb1, emb2, emb3], dim=1).to(device)
    return vector


def save_sd_model_on_train_end(
    args: argparse.Namespace,
    src_path: str,
    save_stable_diffusion_format: bool,
    use_safetensors: bool,
    save_dtype: torch.dtype,
    epoch: int,
    global_step: int,
    text_encoder1,
    text_encoder2,
    unet,
    vae,
    logit_scale,
    ckpt_info,
):
    def sd_saver(ckpt_file, epoch_no, global_step):
        sai_metadata = train_util.get_sai_model_spec(None, args, True, False, False, is_stable_diffusion_ckpt=True)
        sdxl_model_util.save_stable_diffusion_checkpoint(
            ckpt_file,
            text_encoder1,
            text_encoder2,
            unet,
            epoch_no,
            global_step,
            ckpt_info,
            vae,
            logit_scale,
            sai_metadata,
            save_dtype,
        )

    def diffusers_saver(out_dir):
        sdxl_model_util.save_diffusers_checkpoint(
            out_dir,
            text_encoder1,
            text_encoder2,
            unet,
            src_path,
            vae,
            use_safetensors=use_safetensors,
            save_dtype=save_dtype,
        )

    train_util.save_sd_model_on_train_end_common(
        args, save_stable_diffusion_format, use_safetensors, epoch, global_step, sd_saver, diffusers_saver
    )


# epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している
# on_epoch_end: Trueならepoch終了時、Falseならstep経過時
def save_sd_model_on_epoch_end_or_stepwise(
    args: argparse.Namespace,
    on_epoch_end: bool,
    accelerator,
    src_path,
    save_stable_diffusion_format: bool,
    use_safetensors: bool,
    save_dtype: torch.dtype,
    epoch: int,
    num_train_epochs: int,
    global_step: int,
    text_encoder1,
    text_encoder2,
    unet,
    vae,
    logit_scale,
    ckpt_info,
):
    def sd_saver(ckpt_file, epoch_no, global_step):
        sai_metadata = train_util.get_sai_model_spec(None, args, True, False, False, is_stable_diffusion_ckpt=True)
        sdxl_model_util.save_stable_diffusion_checkpoint(
            ckpt_file,
            text_encoder1,
            text_encoder2,
            unet,
            epoch_no,
            global_step,
            ckpt_info,
            vae,
            logit_scale,
            sai_metadata,
            save_dtype,
        )

    def diffusers_saver(out_dir):
        sdxl_model_util.save_diffusers_checkpoint(
            out_dir,
            text_encoder1,
            text_encoder2,
            unet,
            src_path,
            vae,
            use_safetensors=use_safetensors,
            save_dtype=save_dtype,
        )

    train_util.save_sd_model_on_epoch_end_or_stepwise_common(
        args,
        on_epoch_end,
        accelerator,
        save_stable_diffusion_format,
        use_safetensors,
        epoch,
        num_train_epochs,
        global_step,
        sd_saver,
        diffusers_saver,
    )


def add_sdxl_training_arguments(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--cache_text_encoder_outputs", action="store_true", help="cache text encoder outputs / text encoderの出力をキャッシュする"
    )
    parser.add_argument(
        "--cache_text_encoder_outputs_to_disk",
        action="store_true",
        help="cache text encoder outputs to disk / text encoderの出力をディスクにキャッシュする",
    )


def verify_sdxl_training_args(args: argparse.Namespace, supportTextEncoderCaching: bool = True):
    assert not args.v2, "v2 cannot be enabled in SDXL training / SDXL学習ではv2を有効にすることはできません"
    if args.v_parameterization:
        print("v_parameterization will be unexpected / SDXL学習ではv_parameterizationは想定外の動作になります")

    if args.clip_skip is not None:
        print("clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません")

    if args.multires_noise_iterations:
        print(
            f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET}, but noise_offset is disabled due to multires_noise_iterations / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されていますが、multires_noise_iterationsが有効になっているためnoise_offsetは無効になります"
        )
    else:
        if args.noise_offset is None:
            args.noise_offset = DEFAULT_NOISE_OFFSET
        elif args.noise_offset != DEFAULT_NOISE_OFFSET:
            print(
                f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET} / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されています"
            )
        print(f"noise_offset is set to {args.noise_offset} / noise_offsetが{args.noise_offset}に設定されました")

    assert (
        not hasattr(args, "weighted_captions") or not args.weighted_captions
    ), "weighted_captions cannot be enabled in SDXL training currently / SDXL学習では今のところweighted_captionsを有効にすることはできません"

    if supportTextEncoderCaching:
        if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs:
            args.cache_text_encoder_outputs = True
            print(
                "cache_text_encoder_outputs is enabled because cache_text_encoder_outputs_to_disk is enabled / "
                + "cache_text_encoder_outputs_to_diskが有効になっているためcache_text_encoder_outputsが有効になりました"
            )


def sample_images(*args, **kwargs):
    return train_util.sample_images_common(SdxlStableDiffusionLongPromptWeightingPipeline, *args, **kwargs)