File size: 11,262 Bytes
2fdce3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
import gc
import logging
import math
import time
import torch
import torch.distributed as dist
from torch.distributed import rpc
from torch.nn.parallel import DistributedDataParallel as DDP
import utils
from benchmarks.golden_configs.lm_wikitext2 import Pipe as lm_wikitext2
from fairscale.fair_dev.testing.testing import dist_init
from fairscale.nn import Pipe
from fairscale.nn.model_parallel import initialize_model_parallel
MPI_PORT = 29500
RPC_PORT = 29501
def get_tensors_by_size_bucket():
size_buckets = defaultdict(int)
for obj in gc.get_objects():
if not isinstance(obj, torch.Tensor):
continue
if obj.device.type == "cuda":
size_buckets[(*obj.size(),) + (obj.element_size(),)] += 1
return size_buckets
def get_device(model, index):
if isinstance(model, DDP):
model = model.module
if not torch.cuda.is_available():
return torch.device("cpu")
if hasattr(model, "devices"):
return model.devices[index]
else:
return torch.cuda.current_device()
def get_fake_dataloader(lm_dataloader_len, args):
fake_input = {"input": torch.zeros(args.batch_size)}
class FakeDataset:
def __getitem__(self, index):
return fake_input
def __len__(self):
return lm_dataloader_len
return FakeDataset()
def train(model_config, model, benchmark_config, model_specs, args):
lm_dataloader, _, _ = utils.get_data_loader(model_config["dataset_info"], args, benchmark_config, model_specs)
criterion = benchmark_config["criterion"]
vocab_size = model_specs["vocab_size"]
optimizer = model_config["optimizer"]
model.train()
utils.log_number_of_parameters(model)
total_loss = 0.0
word_counter = 0
optimizer = optimizer(model.parameters())
pipe_group = model.group if hasattr(model, "group") else None
# TODO(anj-s): Avoid sending fake data to all replicas except the first and last one.
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if pipe_group and pipe_group.rank() != 0 and pipe_group.rank() != (pipe_group.size() - 1):
lm_dataloader, _, _ = get_synthetic_dataloaders(args, benchmark_config, model_specs)
total_tokens = 0
total_tokens_per_log_interval = 0
bptt = 2
start_time = time.time()
epoch_start_time = 0.0
def get_batch(source):
seq_len = len(source) - 1
data = source[0:seq_len]
target = source[1 : 1 + seq_len]
return data, target
for i, batch in enumerate(lm_dataloader):
if i == 1:
epoch_start_time = time.time()
source, target = get_batch(batch)
if args.max_batch and i > args.max_batch:
break
if i > 0:
total_tokens += source.numel()
optimizer.zero_grad()
try:
if pipe_group is None or pipe_group.rank() == 0:
tmp = source.to(get_device(model, 0))
output = model(tmp)
else:
output = model(source)
except Exception as e:
raise RuntimeError(f"training failed on {torch.distributed.get_rank()}") from e
if pipe_group is None or pipe_group.rank() == pipe_group.size() - 1:
target = target.to(get_device(model, -1))
output = output.to(target.device)
loss = criterion(output.view(-1, vocab_size), target.view(-1))
loss.backward()
del target
else:
model.back_helper(output)
del output
torch.nn.utils.clip_grad_value_(model.parameters(), model_specs["clip_value"])
optimizer.step()
if pipe_group is None or pipe_group.rank() == pipe_group.size() - 1:
total_loss += loss.item()
log_interval = 1
total_tokens_per_log_interval += source.numel()
if i % log_interval == 0 and i > 0:
cur_loss = total_loss / log_interval
elapsed = time.time() - start_time
if dist.get_rank() == dist.get_world_size() - 1:
logging.debug(
"| batch {:5d} | wps {:5.2f} | loss {:5.2f} | ppl {:8.2f}".format(
i, total_tokens_per_log_interval / elapsed, cur_loss, math.exp(cur_loss)
)
)
total_tokens_per_log_interval = 0
total_loss = 0
start_time = time.time()
if epoch_start_time != 0:
wps = total_tokens / (time.time() - epoch_start_time)
else:
raise RuntimeError(
"Unable to benchmark on a single batch. Increase the size " " of the dataset and rerun the benchmark."
)
if dist.get_rank() == dist.get_world_size() - 1:
return wps, loss.item()
else:
return 0.0, 0.0
# TODO(anj-s): Add an option for users to be able to benchmark evaluate.
def evaluate(eval_model, data_source, criterion, ntokens):
eval_model.eval()
total_loss = 0.0
# TODO(anj-s): Move this to the benchmark config if we want to benchmark evaluation.
bptt = 35
def get_batch(source, i, bptt):
seq_len = min(bptt, len(source) - 1 - i)
data = source[i : i + seq_len]
target = source[i + 1 : i + 1 + seq_len].view(-1)
return data, target
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, bptt):
data, targets = get_batch(data_source, i, bptt)
output = eval_model(data)
output = output.to(targets.device)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).item()
return total_loss / (len(data_source) - 1)
def get_number_of_words(data):
return data.size()[0] * data.size()[1]
def verify_peak_memory(rank, golden_config, std_dev):
logging.debug(
"Peak allocated bytes on cuda:0: {:1d}".format(torch.cuda.memory_stats(rank)["allocated_bytes.all.peak"])
)
current_device_usage = torch.cuda.memory_stats(rank)["allocated_bytes.all.peak"]
golden_ref = golden_config["peak_mem_usage"][rank]
if not current_device_usage < golden_ref * std_dev:
raise RuntimeError(
"Peak memory usage for cuda device {:d} is {:d} which"
"is less than golden reference value of {:d}".format(rank, current_device_usage, golden_ref)
)
def verify_lm_run(wps, golden_config, args):
"""Verify that words per second for a given benchmark run matches the golden data."""
if dist.get_rank() == dist.get_world_size() - 1:
# Assert that words per second is within 3 standard deviations of the average
# of five golden runs
logging.info("Throughput(wps) is {:.2f}.".format(wps))
if not wps > (golden_config["avg_wps"] - (3 * golden_config["std_dev_wps"])):
raise RuntimeError(
"Throughput(wps):{:.2f} is below the golden threshold of an "
"average value of {:.2f} and standard dev of {:.2f}.".format(
wps, golden_config["avg_wps"], golden_config["std_dev_wps"]
)
)
for i in range(4):
verify_peak_memory(i, golden_config, 1.1)
def benchmark_language_model(model_config, model, benchmark_config, model_specs, config_class, args):
golden_config = get_golden_config(args.model_name, config_class, args)
epoch = benchmark_config["epochs"]
start_time = time.time()
if dist.get_rank() == dist.get_world_size() - 1:
logging.debug("-" * 110)
logging.debug("| start of epoch {:1d}".format(epoch))
logging.debug("-" * 110)
wps, loss = train(model_config, model, benchmark_config, model_specs, args)
elapsed_time = time.time() - start_time
if dist.get_rank() == dist.get_world_size() - 1:
logging.debug("-" * 110)
logging.debug("| end of epoch {:1d} | time: {:5.2f}s | train loss {:5.2f} ".format(epoch, elapsed_time, loss))
logging.debug("-" * 110)
logging.debug("Throughput(wps) is {:.2f}.".format(wps))
logging.debug(
"Peak allocated bytes on cuda:{}: {:1d}".format(
dist.get_rank(), torch.cuda.memory_stats(dist.get_rank())["allocated_bytes.all.peak"]
)
)
if len(model.balance) == 4:
if args.model_name == "lm":
verify_lm_run(wps, golden_config, args)
else:
raise RuntimeError("Unrecognized args.model_name " % args.model_name)
def generate_balance(num_devices, num_layers):
balance = []
layers_assigned = 0
for i in range(num_devices):
x = (num_layers - layers_assigned) / (num_devices - i)
if x.is_integer():
balance.append(int(x))
layers_assigned += x
else:
balance.append(math.ceil(x))
layers_assigned += math.ceil(x)
return balance
def get_golden_config(model_name, config_class, args):
"""Return a dict with the golden data for throughput and memory usage."""
if model_name == "lm":
return config_class.get_golden_real_stats()
else:
raise RuntimeError("Unrecognized args.model_mame " % args.model_name)
def benchmark_single_process(config_class, args):
"""Benchmark a given model using a single process and multiple devices."""
init_method_pgroup = "tcp://localhost:{}".format(MPI_PORT)
torch.distributed.init_process_group(backend="gloo", rank=0, world_size=1, init_method=init_method_pgroup)
num_devices = torch.cuda.device_count() if torch.cuda.is_available() else 1
assert num_devices > 0
utils.init_random_seed(0)
benchmark_config = utils.create_benchmark_config(args.model_name, config_class)
model_specs = utils.get_model_specs(args.model_name, config_class)
model_config = utils.create_model_config(args, benchmark_config=benchmark_config, model_specs=model_specs)
model = model_config["model"]
balance = generate_balance(min(num_devices, 4), len(model))
pipe_model = Pipe(model, balance, chunks=args.chunks, checkpoint=args.checkpoint)
del model
del model_config["model"]
if args.dry_run:
train(model_config, pipe_model, benchmark_config, model_specs, args)
else:
benchmark_language_model(model_config, pipe_model, benchmark_config, model_specs, config_class, args)
def run_worker(rank, world_size, args):
if args.world_size != 0:
world_size = args.world_size
dist_init(rank + args.rank_base, world_size, hostname=args.host)
initialize_model_parallel(1, world_size)
utils.init_random_seed(0)
run_mp_worker(args, world_size)
rpc.shutdown()
torch.distributed.destroy_process_group()
if __name__ == "__main__":
args = utils.init_args()
logging.basicConfig(level=logging.INFO if not args.debug else logging.DEBUG)
logging.info(f"Running single process benchmark with args: {args}")
benchmark_single_process(lm_wikitext2, args)
|