asgeorges's picture
Upload folder using huggingface_hub
2fdce3c
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import logging
import math
import time
from golden_configs.lm_wikitext2 import MOE as MOEConfig
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import utils
MPI_PORT = 29500
def benchmark_single_process(config_class, args):
"""Benchmark a given model using a single process and multiple devices."""
world_size = torch.cuda.device_count() if torch.cuda.is_available() else 1
assert world_size > 0
benchmark_config = utils.create_benchmark_config(args.model_name, config_class)
model_specs = utils.get_model_specs(args.model_name, config_class)
mp.spawn(train, args=(world_size, benchmark_config, model_specs, args), nprocs=world_size, join=True)
def train(rank, world_size, benchmark_config, model_specs, args):
logger = mp.log_to_stderr()
logger.setLevel(logging.DEBUG if args.debug else logging.INFO)
utils.init_random_seed(rank)
init_method_pgroup = "tcp://localhost:{}".format(MPI_PORT)
torch.distributed.init_process_group(
backend="nccl", rank=rank, world_size=world_size, init_method=init_method_pgroup
)
logger.info("train, rank={}".format(rank))
device = torch.device("cuda", rank) if torch.cuda.is_available() else torch.device("cpu")
criterion = benchmark_config["criterion"]
model_config = utils.create_model_config(
args, benchmark_config=benchmark_config, model_specs=model_specs, device=device
)
# vocab_size may change in create_model_config() due to input data
vocab_size = model_specs["vocab_size"]
model = model_config["model"]
model.train()
optimizer = model_config["optimizer"]
optimizer = optimizer(model.parameters())
group = model.group if hasattr(model, "group") else None
utils.log_number_of_parameters(model, logger)
total_loss = 0.0
word_counter = 0
total_tokens = 0
total_tokens_per_log_interval = 0
bptt = 2
total_elapsed = 0.0
model = DDP(model, device_ids=[rank], output_device=rank, broadcast_buffers=False)
lm_dataloader, _, _ = utils.get_data_loader(
model_config["dataset_info"], args, benchmark_config, model_specs, num_replicas=world_size, rank=rank
)
def get_batch(source):
seq_len = len(source) - 1
data = source[0:seq_len]
target = source[1 : 1 + seq_len]
return data, target
for i, batch in enumerate(lm_dataloader):
if i == 1:
epoch_start_time = time.time()
if args.max_batch and i > args.max_batch:
break
if i > 0:
total_tokens += batch.numel()
start_time = time.time()
optimizer.zero_grad()
source, target = get_batch(batch)
source = source.to(device)
target = target.to(device)
try:
output = model(source.to(device))
loss = criterion(output.view(-1, vocab_size), target.view(-1))
total_loss += loss.item()
loss.backward()
torch.nn.utils.clip_grad_value_(model.parameters(), model_specs["clip_value"])
optimizer.step()
except Exception as e:
raise RuntimeError(f"training failed on {torch.distributed.get_rank()}") from e
elapsed = time.time() - start_time
total_elapsed += elapsed
log_interval = 1
total_tokens_per_log_interval += batch.numel()
if i % log_interval == 0 and i > 0:
cur_loss = total_loss / log_interval
logger.debug(
"| batch {:5d} | wps {:5.2f} | loss {:5.2f} | ppl {:8.2f}".format(
i, total_tokens_per_log_interval / elapsed, cur_loss, math.exp(cur_loss)
)
)
total_tokens_per_log_interval = 0
total_loss = 0
wps = total_tokens / total_elapsed
logger.debug("rank {}, wps: {}".format(rank, wps))
logger.debug(
"Peak allocated bytes on cuda:{}: {:1d}".format(
dist.get_rank(), torch.cuda.memory_stats(dist.get_rank())["allocated_bytes.all.peak"]
)
)
if __name__ == "__main__":
args = utils.init_args()
logging.basicConfig(level=logging.INFO if not args.debug else logging.DEBUG)
logging.info(f"Running single process benchmark with args: {args}")
benchmark_single_process(MOEConfig, args)