|
import operator |
|
import warnings |
|
|
|
import torch |
|
import bitsandbytes.functional as F |
|
|
|
from dataclasses import dataclass |
|
from functools import reduce |
|
|
|
|
|
def prod(iterable): |
|
return reduce(operator.mul, iterable, 1) |
|
|
|
tensor = torch.Tensor |
|
|
|
""" |
|
This class pools outlier dimensions across layers. |
|
This is particularly important for small models where outlier features |
|
are less systematic and occur with low frequency. |
|
""" |
|
class GlobalOutlierPooler(object): |
|
_instance = None |
|
|
|
def __init__(self): |
|
raise RuntimeError("Call get_instance() instead") |
|
|
|
def initialize(self): |
|
self.outliers = set() |
|
self.model_dim = None |
|
|
|
@classmethod |
|
def get_instance(cls): |
|
if cls._instance is None: |
|
cls._instance = cls.__new__(cls) |
|
cls._instance.initialize() |
|
return cls._instance |
|
|
|
def add_outliers(self, outlier_idx, feature_dim): |
|
if self.model_dim is None: |
|
self.model_dim = feature_dim |
|
if feature_dim != self.model_dim: |
|
return |
|
|
|
self.outliers.update(outlier_idx.tolist()) |
|
|
|
def get_current_outlier_idx(self): |
|
return torch.Tensor(list(self.outliers)).to(torch.int64) |
|
|
|
|
|
class MatMul8bit(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, A, B, out=None, quant_type="vector", precision=[8, 8, 8]): |
|
|
|
if precision[0] != 8: |
|
with torch.no_grad(): |
|
output = torch.matmul(A, B) |
|
else: |
|
if len(B.shape) == 2: |
|
dim = 0 |
|
else: |
|
dim = 1 |
|
qA, SA = F.vectorwise_quant(A, dim=-1, quant_type=quant_type) |
|
qB, SB = F.vectorwise_quant(B, dim=dim, quant_type=quant_type) |
|
iout = F.igemm(qA, qB) |
|
output = F.vectorwise_mm_dequant(iout, SA, SB, A.dtype, quant_type) |
|
|
|
if A.requires_grad or B.requires_grad: |
|
ctx.save_for_backward(A, B) |
|
|
|
ctx.quant_type = quant_type |
|
ctx.precision = precision |
|
|
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
A, B = ctx.saved_tensors |
|
quant_type = ctx.quant_type |
|
precision = ctx.precision |
|
grad_A = grad_B = None |
|
|
|
if B.requires_grad: |
|
if len(A.shape) == 3: |
|
dims = [0, 1] |
|
|
|
permute_dim = [0, 2, 1] |
|
else: |
|
dims = [0] |
|
|
|
permute_dim = [1, 0] |
|
|
|
if precision[1] != 8: |
|
with torch.no_grad(): |
|
grad_B = torch.matmul(A.permute(permute_dim), grad_output) |
|
else: |
|
if len(B.shape) == 2 and len(A.shape) == 3: |
|
grad_output = grad_output.contiguous() |
|
if not grad_output.is_contiguous(): |
|
grad_output.contiguous() |
|
qgrad_output, S1 = F.vectorwise_quant( |
|
grad_output.view(-1, grad_output.shape[2]), |
|
dim=0, |
|
quant_type=quant_type, |
|
) |
|
if not A.is_contiguous(): |
|
A = A.contiguous() |
|
qA, S2 = F.vectorwise_quant( |
|
A.view(-1, A.shape[2]), dim=0, quant_type=quant_type |
|
) |
|
igrad_B = F.igemm(qA.t(), qgrad_output) |
|
grad_B = F.vectorwise_mm_dequant( |
|
igrad_B, S2.t(), S1, grad_output.dtype, quant_type |
|
) |
|
else: |
|
qgrad_output, S1 = F.vectorwise_quant( |
|
grad_output, dim=dims, quant_type=quant_type |
|
) |
|
qA, S2 = F.vectorwise_quant( |
|
A, dim=dims, quant_type=quant_type |
|
) |
|
igrad_B = F.igemm(qA.permute(permute_dim), qgrad_output) |
|
grad_B = F.vectorwise_mm_dequant( |
|
igrad_B, |
|
S2.permute(permute_dim), |
|
S1, |
|
grad_output.dtype, |
|
quant_type, |
|
) |
|
|
|
if A.requires_grad: |
|
if len(grad_output.shape) == 3: |
|
dims = [2] |
|
else: |
|
dims = [1] |
|
|
|
if len(B.shape) == 3: |
|
|
|
permute_dim = [0, 2, 1] |
|
dim_B = dims |
|
else: |
|
|
|
permute_dim = [1, 0] |
|
dim_B = [1] |
|
|
|
if precision[2] != 8: |
|
with torch.no_grad(): |
|
grad_A = torch.matmul(grad_output, B.permute(permute_dim)) |
|
else: |
|
qgrad_output, S1 = F.vectorwise_quant( |
|
grad_output, dim=dims, quant_type=quant_type |
|
) |
|
qB, S3 = F.vectorwise_quant(B, dim=dim_B, quant_type=quant_type) |
|
igrad_A = F.igemm(qgrad_output, qB.permute(permute_dim)) |
|
grad_A = F.vectorwise_mm_dequant( |
|
igrad_A, |
|
S1, |
|
S3.permute(permute_dim), |
|
grad_output.dtype, |
|
quant_type, |
|
) |
|
|
|
return grad_A, grad_B, None, None, None |
|
|
|
|
|
mm_cublas = MatMul8bit.apply |
|
bmm_cublas = MatMul8bit.apply |
|
matmul_cublas = MatMul8bit.apply |
|
|
|
|
|
@dataclass |
|
class MatmulLtState: |
|
CB = None |
|
CxB = None |
|
SB = None |
|
SCB = None |
|
|
|
CxBt = None |
|
SBt = None |
|
CBt = None |
|
|
|
subB = None |
|
|
|
outlier_pool = None |
|
has_accumulated_gradients = False |
|
threshold = 0.0 |
|
idx = None |
|
is_training = True |
|
has_fp16_weights = True |
|
memory_efficient_backward = False |
|
use_pool = False |
|
formatB = F.get_special_format_str() |
|
|
|
def reset_grads(self): |
|
self.CB = None |
|
self.CxB = None |
|
self.SB = None |
|
self.SCB = None |
|
|
|
self.CxBt = None |
|
self.SBt = None |
|
self.CBt = None |
|
|
|
|
|
class MatMul8bitLt(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState()): |
|
|
|
ctx.is_empty = False |
|
if prod(A.shape) == 0: |
|
ctx.is_empty = True |
|
ctx.A = A |
|
ctx.B = B |
|
ctx.bias = bias |
|
if A.shape[-1] == B.shape[0]: |
|
return torch.empty(A.shape[:-1]+B.shape[1:], dtype=A.dtype, device=A.device) |
|
else: |
|
return torch.empty(A.shape[:-1]+B.shape[:1], dtype=A.dtype, device=A.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
formatB = state.formatB |
|
input_shape = A.shape |
|
if state.outlier_pool is None: |
|
state.outlier_pool = GlobalOutlierPooler.get_instance() |
|
|
|
|
|
if A.dtype != torch.float16: |
|
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization") |
|
|
|
|
|
if len(A.shape) == 3: |
|
A = A.view(-1, A.shape[-1]).contiguous() |
|
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant( |
|
A.to(torch.float16), threshold=state.threshold |
|
) |
|
|
|
if state.threshold > 0.0 and coo_tensorA is not None: |
|
if state.has_fp16_weights: |
|
idx = torch.unique(coo_tensorA.colidx).long() |
|
CA[:, idx] = 0 |
|
CAt[:, idx] = 0 |
|
subA = A[:, idx] |
|
state.subB = B[:, idx].t().contiguous() |
|
state.idx = idx |
|
else: |
|
if state.CxB is None: |
|
|
|
|
|
state.CxB, state.SB = F.transform(state.CB, to_order=formatB) |
|
else: |
|
if not state.has_fp16_weights and state.CxB is None: |
|
state.CxB, state.SB = F.transform(state.CB, to_order=formatB) |
|
subA = None |
|
|
|
|
|
if state.has_fp16_weights: |
|
has_grad = True if (getattr(B, "grad", None) is not None) else False |
|
is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1) |
|
if is_transposed: |
|
B = B.contiguous() |
|
|
|
if (state.is_training and not has_grad) or state.CxB is None: |
|
state.reset_grads() |
|
( |
|
CB, |
|
state.CBt, |
|
state.SCB, |
|
state.SCBt, |
|
coo_tensorB, |
|
) = F.double_quant(B.to(torch.float16)) |
|
state.CxB, state.SB = F.transform(CB, to_order=formatB) |
|
else: |
|
has_grad = False |
|
|
|
if coo_tensorA is not None and not state.has_fp16_weights: |
|
|
|
|
|
outlier_idx = torch.unique(coo_tensorA.colidx) |
|
state.idx = outlier_idx |
|
|
|
|
|
|
|
|
|
|
|
|
|
outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int()) |
|
state.subB = ( |
|
(outliers * state.SCB.view(-1, 1) / 127.0) |
|
.t() |
|
.contiguous() |
|
.to(A.dtype) |
|
) |
|
CA[:, state.idx.long()] = 0 |
|
CAt[:, state.idx.long()] = 0 |
|
subA = A[:, state.idx.long()] |
|
|
|
shapeB = state.SB[0] |
|
|
|
if len(input_shape) == 3: |
|
output_shape = (input_shape[0], input_shape[1], shapeB[0]) |
|
else: |
|
output_shape = (input_shape[0], shapeB[0]) |
|
|
|
|
|
C32A, SA = F.transform(CA, "col32") |
|
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB) |
|
|
|
|
|
if bias is None or bias.dtype == torch.float16: |
|
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias) |
|
output = output.to(A.dtype) |
|
else: |
|
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None) |
|
output = output.to(A.dtype).add_(bias) |
|
|
|
|
|
if coo_tensorA is not None and subA is not None: |
|
output += torch.matmul(subA, state.subB) |
|
|
|
|
|
ctx.state = state |
|
|
|
ctx.formatB = formatB |
|
ctx.grad_shape = input_shape |
|
ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype |
|
|
|
if any(ctx.needs_input_grad[:2]): |
|
ctx.tensors = (CAt, subA) |
|
ctx.tensor_states = (SCAt, state.idx) |
|
else: |
|
ctx.tensors = [None, None] |
|
ctx.tensor_states = (None, None) |
|
ctx.save_for_backward(None, None) |
|
|
|
|
|
clone_func = torch.clone if len(output_shape) == 3 else lambda x : x |
|
return clone_func(output.view(output_shape)) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
if ctx.is_empty: |
|
bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias)) |
|
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None |
|
req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad |
|
CAt, subA = ctx.tensors |
|
SCAt, idx = ctx.tensor_states |
|
formatB = ctx.formatB |
|
state = ctx.state |
|
grad_A = grad_B = grad_bias = None |
|
|
|
if req_gradBias: |
|
|
|
grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias) |
|
|
|
|
|
if len(grad_output.shape) == 3: |
|
grad_output = grad_output.reshape( |
|
-1, grad_output.shape[-1] |
|
).contiguous() |
|
|
|
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16)) |
|
if req_gradB: |
|
CxAt, SAt = F.transform(CAt, formatB, transpose=True) |
|
C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True) |
|
gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt) |
|
grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt) |
|
if state.threshold > 0.0 and subA is not None: |
|
grad_B[:, idx] += torch.matmul(grad_output.t(), subA) |
|
|
|
if req_gradA: |
|
if state.CBt is not None: |
|
C32grad, Sgrad = F.transform(Cgrad, "col32") |
|
if state.CxBt is None: |
|
state.CxBt, state.SBt = F.transform( |
|
state.CBt, to_order=formatB, transpose=True |
|
) |
|
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt) |
|
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A) |
|
|
|
elif state.CB is not None: |
|
CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1. / 127.0)) |
|
grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A) |
|
else: |
|
raise Exception('State must contain either CBt or CB matrix for backward') |
|
|
|
return grad_A, grad_B, None, grad_bias, None |
|
|
|
|
|
def matmul( |
|
A: tensor, |
|
B: tensor, |
|
out: tensor = None, |
|
state: MatmulLtState = None, |
|
threshold=0.0, |
|
bias=None |
|
): |
|
state = state or MatmulLtState() |
|
if threshold > 0.0: |
|
state.threshold = threshold |
|
return MatMul8bitLt.apply(A, B, out, bias, state) |
|
|