|
|
|
|
|
|
|
|
|
import torch |
|
from torch.optim import Optimizer |
|
|
|
from bitsandbytes.optim.optimizer import Optimizer1State |
|
|
|
|
|
class LARS(Optimizer1State): |
|
def __init__( |
|
self, |
|
params, |
|
lr, |
|
momentum=0, |
|
dampening=0, |
|
weight_decay=0, |
|
nesterov=False, |
|
optim_bits=32, |
|
args=None, |
|
min_8bit_size=4096, |
|
percentile_clipping=100, |
|
max_unorm=0.02, |
|
): |
|
if momentum == 0: |
|
raise NotImplementedError( |
|
f"LARS without momentum is not supported!" |
|
) |
|
super(LARS, self).__init__( |
|
"lars", |
|
params, |
|
lr, |
|
(momentum, dampening), |
|
0.0, |
|
weight_decay, |
|
optim_bits, |
|
args, |
|
min_8bit_size, |
|
percentile_clipping, |
|
max_unorm=max_unorm, |
|
block_wise=False, |
|
) |
|
|
|
|
|
class LARS8bit(Optimizer1State): |
|
def __init__( |
|
self, |
|
params, |
|
lr, |
|
momentum=0, |
|
dampening=0, |
|
weight_decay=0, |
|
nesterov=False, |
|
args=None, |
|
min_8bit_size=4096, |
|
percentile_clipping=100, |
|
max_unorm=0.02, |
|
): |
|
if momentum == 0: |
|
raise NotImplementedError( |
|
f"LARS without momentum is not supported!" |
|
) |
|
super(LARS8bit, self).__init__( |
|
"lars", |
|
params, |
|
lr, |
|
(momentum, dampening), |
|
0.0, |
|
weight_decay, |
|
8, |
|
args, |
|
min_8bit_size, |
|
percentile_clipping, |
|
max_unorm=max_unorm, |
|
block_wise=False, |
|
) |
|
|
|
|
|
class LARS32bit(Optimizer1State): |
|
def __init__( |
|
self, |
|
params, |
|
lr, |
|
momentum=0, |
|
dampening=0, |
|
weight_decay=0, |
|
nesterov=False, |
|
args=None, |
|
min_8bit_size=4096, |
|
percentile_clipping=100, |
|
max_unorm=0.02, |
|
): |
|
if momentum == 0: |
|
raise NotImplementedError( |
|
f"LARS without momentum is not supported!" |
|
) |
|
super(LARS32bit, self).__init__( |
|
"lars", |
|
params, |
|
lr, |
|
(momentum, dampening), |
|
0.0, |
|
weight_decay, |
|
32, |
|
args, |
|
min_8bit_size, |
|
percentile_clipping, |
|
max_unorm=max_unorm, |
|
block_wise=False, |
|
) |
|
|
|
|
|
class PytorchLARS(Optimizer): |
|
def __init__( |
|
self, |
|
params, |
|
lr=0.01, |
|
momentum=0, |
|
dampening=0, |
|
weight_decay=0, |
|
nesterov=False, |
|
max_unorm=0.02, |
|
): |
|
if lr < 0.0: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if momentum < 0.0: |
|
raise ValueError("Invalid momentum value: {}".format(momentum)) |
|
if weight_decay < 0.0: |
|
raise ValueError( |
|
"Invalid weight_decay value: {}".format(weight_decay) |
|
) |
|
|
|
defaults = dict( |
|
lr=lr, |
|
momentum=momentum, |
|
dampening=dampening, |
|
weight_decay=weight_decay, |
|
nesterov=nesterov, |
|
max_unorm=max_unorm, |
|
) |
|
if nesterov and (momentum <= 0 or dampening != 0): |
|
raise ValueError( |
|
"Nesterov momentum requires a momentum and zero dampening" |
|
) |
|
super(PytorchLARS, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(PytorchLARS, self).__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("nesterov", False) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Args: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
with torch.enable_grad(): |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
params_with_grad = [] |
|
d_p_list = [] |
|
momentum_buffer_list = [] |
|
weight_decay = group["weight_decay"] |
|
momentum = group["momentum"] |
|
dampening = group["dampening"] |
|
nesterov = group["nesterov"] |
|
max_unorm = group["max_unorm"] |
|
lr = group["lr"] |
|
|
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
|
|
state = self.state[p] |
|
d_p = p.grad |
|
if weight_decay != 0: |
|
d_p = d_p.add(param, alpha=weight_decay) |
|
|
|
if momentum != 0: |
|
buf = state.get("momentum_buffer", None) |
|
|
|
if buf is None: |
|
buf = torch.clone(d_p).detach() |
|
state["momentum_buffer"] = buf |
|
else: |
|
buf.mul_(momentum).add_(d_p, alpha=1 - dampening) |
|
|
|
if nesterov: |
|
update = d_p + buf * momentum |
|
else: |
|
update = buf |
|
|
|
update_scale = 1.0 |
|
if max_unorm > 0.0: |
|
assert p.dtype == torch.float32 |
|
pnorm = torch.norm(p.detach()) |
|
unorm = torch.norm(update) |
|
if unorm > max_unorm * pnorm: |
|
update_scale = max_unorm * pnorm / unorm |
|
|
|
p.add_(update, alpha=-lr * update_scale) |
|
|
|
return loss |
|
|