import os import re import gradio as gr from easygui import msgbox, boolbox from .common_gui import get_folder_path from library.custom_logging import setup_logging # Set up logging log = setup_logging() # def select_folder(): # # Open a file dialog to select a directory # folder = filedialog.askdirectory() # # Update the GUI to display the selected folder # selected_folder_label.config(text=folder) def dataset_balancing(concept_repeats, folder, insecure): if not concept_repeats > 0: # Display an error message if the total number of repeats is not a valid integer msgbox('Please enter a valid integer for the total number of repeats.') return concept_repeats = int(concept_repeats) # Check if folder exist if folder == '' or not os.path.isdir(folder): msgbox('Please enter a valid folder for balancing.') return pattern = re.compile(r'^\d+_.+$') # Iterate over the subdirectories in the selected folder for subdir in os.listdir(folder): if pattern.match(subdir) or insecure: # Calculate the number of repeats for the current subdirectory # Get a list of all the files in the folder files = os.listdir(os.path.join(folder, subdir)) # Filter the list to include only image files image_files = [ f for f in files if f.endswith(('.jpg', '.jpeg', '.png', '.gif', '.webp')) ] # Count the number of image files images = len(image_files) if images == 0: log.info( f'No images of type .jpg, .jpeg, .png, .gif, .webp were found in {os.listdir(os.path.join(folder, subdir))}' ) # Check if the subdirectory name starts with a number inside braces, # indicating that the repeats value should be multiplied match = re.match(r'^\{(\d+\.?\d*)\}', subdir) if match: # Multiply the repeats value by the number inside the braces if not images == 0: repeats = max( 1, round( concept_repeats / images * float(match.group(1)) ), ) else: repeats = 0 subdir = subdir[match.end() :] else: if not images == 0: repeats = max(1, round(concept_repeats / images)) else: repeats = 0 # Check if the subdirectory name already has a number at the beginning match = re.match(r'^\d+_', subdir) if match: # Replace the existing number with the new number old_name = os.path.join(folder, subdir) new_name = os.path.join( folder, f'{repeats}_{subdir[match.end():]}' ) else: # Add the new number at the beginning of the name old_name = os.path.join(folder, subdir) new_name = os.path.join(folder, f'{repeats}_{subdir}') os.rename(old_name, new_name) else: log.info( f'Skipping folder {subdir} because it does not match kohya_ss expected syntax...' ) msgbox('Dataset balancing completed...') def warning(insecure): if insecure: if boolbox( f'WARNING!!! You have asked to rename non kohya_ss _ folders...\n\nAre you sure you want to do that?', choices=('Yes, I like danger', 'No, get me out of here'), ): return True else: return False def gradio_dataset_balancing_tab(headless=False): with gr.Tab('Dreambooth/LoRA Dataset balancing'): gr.Markdown( 'This utility will ensure that each concept folder in the dataset folder is used equally during the training process of the dreambooth machine learning model, regardless of the number of images in each folder. It will do this by renaming the concept folders to indicate the number of times they should be repeated during training.' ) gr.Markdown( 'WARNING! The use of this utility on the wrong folder can lead to unexpected folder renaming!!!' ) with gr.Row(): select_dataset_folder_input = gr.Textbox( label='Dataset folder', placeholder='Folder containing the concepts folders to balance...', interactive=True, ) select_dataset_folder_button = gr.Button( '📂', elem_id='open_folder_small', visible=(not headless) ) select_dataset_folder_button.click( get_folder_path, outputs=select_dataset_folder_input, show_progress=False, ) total_repeats_number = gr.Number( value=1000, interactive=True, label='Training steps per concept per epoch', ) with gr.Accordion('Advanced options', open=False): insecure = gr.Checkbox( value=False, label='DANGER!!! -- Insecure folder renaming -- DANGER!!!', ) insecure.change(warning, inputs=insecure, outputs=insecure) balance_button = gr.Button('Balance dataset') balance_button.click( dataset_balancing, inputs=[ total_repeats_number, select_dataset_folder_input, insecure, ], show_progress=False, )