import gradio as gr from easygui import msgbox import subprocess import os from .common_gui import ( get_saveasfilename_path, get_file_path, is_file_writable ) from library.custom_logging import setup_logging # Set up logging log = setup_logging() folder_symbol = '\U0001f4c2' # 📂 refresh_symbol = '\U0001f504' # 🔄 save_style_symbol = '\U0001f4be' # 💾 document_symbol = '\U0001F4C4' # 📄 PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe' def extract_lora( model_tuned, model_org, save_to, save_precision, dim, v2, sdxl, conv_dim, clamp_quantile, min_diff, device, ): # Check for caption_text_input if model_tuned == '': log.info('Invalid finetuned model file') return if model_org == '': log.info('Invalid base model file') return # Check if source model exist if not os.path.isfile(model_tuned): log.info('The provided finetuned model is not a file') return if not os.path.isfile(model_org): log.info('The provided base model is not a file') return if not is_file_writable(save_to): return run_cmd = ( f'{PYTHON} "{os.path.join("networks","extract_lora_from_models.py")}"' ) run_cmd += f' --save_precision {save_precision}' run_cmd += f' --save_to "{save_to}"' run_cmd += f' --model_org "{model_org}"' run_cmd += f' --model_tuned "{model_tuned}"' run_cmd += f' --dim {dim}' run_cmd += f' --device {device}' if conv_dim > 0: run_cmd += f' --conv_dim {conv_dim}' if v2: run_cmd += f' --v2' if sdxl: run_cmd += f' --sdxl' run_cmd += f' --clamp_quantile {clamp_quantile}' run_cmd += f' --min_diff {min_diff}' log.info(run_cmd) # Run the command if os.name == 'posix': os.system(run_cmd) else: subprocess.run(run_cmd) ### # Gradio UI ### def gradio_extract_lora_tab(headless=False): with gr.Tab('Extract LoRA'): gr.Markdown( 'This utility can extract a LoRA network from a finetuned model.' ) lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False) lora_ext_name = gr.Textbox(value='LoRA model types', visible=False) model_ext = gr.Textbox(value='*.ckpt *.safetensors', visible=False) model_ext_name = gr.Textbox(value='Model types', visible=False) with gr.Row(): model_tuned = gr.Textbox( label='Finetuned model', placeholder='Path to the finetuned model to extract', interactive=True, ) button_model_tuned_file = gr.Button( folder_symbol, elem_id='open_folder_small', visible=(not headless), ) button_model_tuned_file.click( get_file_path, inputs=[model_tuned, model_ext, model_ext_name], outputs=model_tuned, show_progress=False, ) model_org = gr.Textbox( label='Stable Diffusion base model', placeholder='Stable Diffusion original model: ckpt or safetensors file', interactive=True, ) button_model_org_file = gr.Button( folder_symbol, elem_id='open_folder_small', visible=(not headless), ) button_model_org_file.click( get_file_path, inputs=[model_org, model_ext, model_ext_name], outputs=model_org, show_progress=False, ) with gr.Row(): save_to = gr.Textbox( label='Save to', placeholder='path where to save the extracted LoRA model...', interactive=True, ) button_save_to = gr.Button( folder_symbol, elem_id='open_folder_small', visible=(not headless), ) button_save_to.click( get_saveasfilename_path, inputs=[save_to, lora_ext, lora_ext_name], outputs=save_to, show_progress=False, ) save_precision = gr.Dropdown( label='Save precision', choices=['fp16', 'bf16', 'float'], value='float', interactive=True, ) with gr.Row(): dim = gr.Slider( minimum=4, maximum=1024, label='Network Dimension (Rank)', value=128, step=1, interactive=True, ) conv_dim = gr.Slider( minimum=0, maximum=1024, label='Conv Dimension (Rank)', value=128, step=1, interactive=True, ) clamp_quantile = gr.Number( label='Clamp Quantile', value=1, interactive=True, ) min_diff = gr.Number( label='Minimum difference', value=0.01, interactive=True, ) with gr.Row(): v2 = gr.Checkbox(label='v2', value=False, interactive=True) sdxl = gr.Checkbox(label='SDXL', value=False, interactive=True) device = gr.Dropdown( label='Device', choices=[ 'cpu', 'cuda', ], value='cuda', interactive=True, ) extract_button = gr.Button('Extract LoRA model') extract_button.click( extract_lora, inputs=[ model_tuned, model_org, save_to, save_precision, dim, v2, sdxl, conv_dim, clamp_quantile, min_diff, device, ], show_progress=False, )