# Standard library imports import os import subprocess # Third-party imports import gradio as gr from easygui import msgbox # Local module imports from .common_gui import get_saveasfilename_path, get_file_path from library.custom_logging import setup_logging # Set up logging log = setup_logging() folder_symbol = '\U0001f4c2' # 📂 refresh_symbol = '\U0001f504' # 🔄 save_style_symbol = '\U0001f4be' # 💾 document_symbol = '\U0001F4C4' # 📄 PYTHON = 'python3' if os.name == 'posix' else './venv/Scripts/python.exe' def check_model(model): if not model: return True if not os.path.isfile(model): msgbox(f'The provided {model} is not a file') return False return True def verify_conditions(sd_model, lora_models): lora_models_count = sum(1 for model in lora_models if model) if sd_model and lora_models_count >= 1: return True elif not sd_model and lora_models_count >= 2: return True return False def merge_lora( sd_model, sdxl_model, lora_a_model, lora_b_model, lora_c_model, lora_d_model, ratio_a, ratio_b, ratio_c, ratio_d, save_to, precision, save_precision, ): log.info('Merge model...') models = [sd_model, lora_a_model, lora_b_model, lora_c_model, lora_d_model] lora_models = models[1:] ratios = [ratio_a, ratio_b, ratio_c, ratio_d] if not verify_conditions(sd_model, lora_models): log.info( 'Warning: Either provide at least one LoRa model along with the sd_model or at least two LoRa models if no sd_model is provided.' ) return for model in models: if not check_model(model): return if not sdxl_model: run_cmd = f'{PYTHON} "{os.path.join("networks","merge_lora.py")}"' else: run_cmd = f'{PYTHON} "{os.path.join("networks","sdxl_merge_lora.py")}"' if sd_model: run_cmd += f' --sd_model "{sd_model}"' run_cmd += f' --save_precision {save_precision}' run_cmd += f' --precision {precision}' run_cmd += f' --save_to "{save_to}"' # Create a space-separated string of non-empty models (from the second element onwards), enclosed in double quotes models_cmd = ' '.join([f'"{model}"' for model in lora_models if model]) # Create a space-separated string of non-zero ratios corresponding to non-empty LoRa models valid_ratios = [ratios[i] for i, model in enumerate(lora_models) if model] ratios_cmd = ' '.join([str(ratio) for ratio in valid_ratios]) if models_cmd: run_cmd += f' --models {models_cmd}' run_cmd += f' --ratios {ratios_cmd}' log.info(run_cmd) # Run the command if os.name == 'posix': os.system(run_cmd) else: subprocess.run(run_cmd) log.info('Done merging...') ### # Gradio UI ### def gradio_merge_lora_tab(headless=False): with gr.Tab('Merge LoRA'): gr.Markdown( 'This utility can merge up to 4 LoRA together or alternatively merge up to 4 LoRA into a SD checkpoint.' ) lora_ext = gr.Textbox(value='*.safetensors *.pt', visible=False) lora_ext_name = gr.Textbox(value='LoRA model types', visible=False) ckpt_ext = gr.Textbox(value='*.safetensors *.ckpt', visible=False) ckpt_ext_name = gr.Textbox(value='SD model types', visible=False) with gr.Row(): sd_model = gr.Textbox( label='SD Model', placeholder='(Optional) Stable Diffusion model', interactive=True, info='Provide a SD file path IF you want to merge it with LoRA files', ) sd_model_file = gr.Button( folder_symbol, elem_id='open_folder_small', visible=(not headless), ) sd_model_file.click( get_file_path, inputs=[sd_model, ckpt_ext, ckpt_ext_name], outputs=sd_model, show_progress=False, ) sdxl_model = gr.Checkbox(label='SDXL model', value=False) with gr.Row(): lora_a_model = gr.Textbox( label='LoRA model "A"', placeholder='Path to the LoRA A model', interactive=True, ) button_lora_a_model_file = gr.Button( folder_symbol, elem_id='open_folder_small', visible=(not headless), ) button_lora_a_model_file.click( get_file_path, inputs=[lora_a_model, lora_ext, lora_ext_name], outputs=lora_a_model, show_progress=False, ) lora_b_model = gr.Textbox( label='LoRA model "B"', placeholder='Path to the LoRA B model', interactive=True, ) button_lora_b_model_file = gr.Button( folder_symbol, elem_id='open_folder_small', visible=(not headless), ) button_lora_b_model_file.click( get_file_path, inputs=[lora_b_model, lora_ext, lora_ext_name], outputs=lora_b_model, show_progress=False, ) with gr.Row(): ratio_a = gr.Slider( label='Model A merge ratio (eg: 0.5 mean 50%)', minimum=0, maximum=1, step=0.01, value=0.0, interactive=True, ) ratio_b = gr.Slider( label='Model B merge ratio (eg: 0.5 mean 50%)', minimum=0, maximum=1, step=0.01, value=0.0, interactive=True, ) with gr.Row(): lora_c_model = gr.Textbox( label='LoRA model "C"', placeholder='Path to the LoRA C model', interactive=True, ) button_lora_c_model_file = gr.Button( folder_symbol, elem_id='open_folder_small', visible=(not headless), ) button_lora_c_model_file.click( get_file_path, inputs=[lora_c_model, lora_ext, lora_ext_name], outputs=lora_c_model, show_progress=False, ) lora_d_model = gr.Textbox( label='LoRA model "D"', placeholder='Path to the LoRA D model', interactive=True, ) button_lora_d_model_file = gr.Button( folder_symbol, elem_id='open_folder_small', visible=(not headless), ) button_lora_d_model_file.click( get_file_path, inputs=[lora_d_model, lora_ext, lora_ext_name], outputs=lora_d_model, show_progress=False, ) with gr.Row(): ratio_c = gr.Slider( label='Model C merge ratio (eg: 0.5 mean 50%)', minimum=0, maximum=1, step=0.01, value=0.0, interactive=True, ) ratio_d = gr.Slider( label='Model D merge ratio (eg: 0.5 mean 50%)', minimum=0, maximum=1, step=0.01, value=0.0, interactive=True, ) with gr.Row(): save_to = gr.Textbox( label='Save to', placeholder='path for the file to save...', interactive=True, ) button_save_to = gr.Button( folder_symbol, elem_id='open_folder_small', visible=(not headless), ) button_save_to.click( get_saveasfilename_path, inputs=[save_to, lora_ext, lora_ext_name], outputs=save_to, show_progress=False, ) precision = gr.Dropdown( label='Merge precision', choices=['fp16', 'bf16', 'float'], value='float', interactive=True, ) save_precision = gr.Dropdown( label='Save precision', choices=['fp16', 'bf16', 'float'], value='fp16', interactive=True, ) merge_button = gr.Button('Merge model') merge_button.click( merge_lora, inputs=[ sd_model, sdxl_model, lora_a_model, lora_b_model, lora_c_model, lora_d_model, ratio_a, ratio_b, ratio_c, ratio_d, save_to, precision, save_precision, ], show_progress=False, )