asgharasad786 commited on
Commit
7dbdc08
·
verified ·
1 Parent(s): 32dc36b

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +33 -0
  2. requirements.txt +7 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ # Load the speech recognition pipeline
5
+ pipe = pipeline("automatic-speech-recognition", model="AqeelShafy7/AudioSangraha-Audio_to_Text")
6
+
7
+ # Streamlit app layout
8
+ st.title("Speech to Text Transcription")
9
+
10
+ # Sidebar layout for uploading audio and processing it
11
+ st.sidebar.title("Upload Audio for Transcription")
12
+
13
+ # File uploader widget for the audio file in the sidebar
14
+ audio_file = st.sidebar.file_uploader("Upload Audio File (MP3 format)", type=["mp3"])
15
+
16
+ # Button to process the audio file
17
+ if st.sidebar.button("Process Audio"):
18
+ if audio_file is not None:
19
+ # Define a path for the uploaded file (within the app's directory)
20
+ upload_path = "uploaded_audio.mp3"
21
+
22
+ # Save the uploaded file to the defined path
23
+ with open(upload_path, "wb") as f:
24
+ f.write(audio_file.getbuffer())
25
+
26
+ # Provide the file path to the pipeline
27
+ result = pipe(upload_path)
28
+
29
+ # Display the transcription result in the main area
30
+ transcribed_text = result['text']
31
+ st.text_area("Transcribed Text", transcribed_text, height=300)
32
+ else:
33
+ st.error("Please upload an audio file to process.")
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ streamlit==1.17.0
2
+ altair==4.0.0
3
+ transformers==4.38.0
4
+ torch==2.2.0
5
+ numpy==1.24.3
6
+ ffmpeg
7
+