|
import streamlit as st |
|
import pandas as pd |
|
|
|
st.set_page_config(page_title="Cyber Benchmark Hub: Leaderboard", layout="wide") |
|
|
|
st.title("Cyber Benchmark Hub: Leaderboard") |
|
|
|
|
|
with st.sidebar: |
|
st.image("https://cdn.prod.website-files.com/630f558f2a15ca1e88a2f774/631f1436ad7a0605fecc5e15_Logo.svg", use_container_width=True) |
|
st.markdown("[Priam.ai](https://www.priam.ai/)") |
|
st.divider() |
|
|
|
dataset_categories = ["Multiple Choice"] |
|
selected_category = st.selectbox("Select Dataset Category", dataset_categories, index=0) |
|
|
|
datasets_by_category = { |
|
"Multiple Choice": ["secQA","CyberMetric80"], |
|
} |
|
dataset_choice = st.selectbox("Select Dataset", datasets_by_category[selected_category], index=0) |
|
|
|
st.divider() |
|
st.header("Filters & Options") |
|
|
|
if dataset_choice == "secQA": |
|
dataset_version = st.radio("Select Dataset Version", ["v1", "v2"]) |
|
else: |
|
st.markdown("**Note:** Only CyberMetric80 has been evaluated") |
|
dataset_version = "v1" |
|
|
|
|
|
|
|
source_filter_placeholder = st.empty() |
|
|
|
st.markdown("---") |
|
st.header("Test Parameters") |
|
test_params = pd.DataFrame({ |
|
"Value": [0, 1, 0, 1, 0] |
|
}, index=["Temperature", "n", "Presence Penalty", "Top_p", "Frequency Penalty"]) |
|
st.table(test_params) |
|
|
|
|
|
def estimate_random_accuracy(questions): |
|
""" |
|
Estimates the average accuracy when answering questions randomly. |
|
|
|
Args: |
|
questions: List of tuples where each tuple is (question_id, num_choices) |
|
|
|
Returns: |
|
The estimated average accuracy (probability of correct answers) |
|
""" |
|
if not questions: |
|
return 0.0 |
|
|
|
total_probability = 0.0 |
|
for question_id, num_choices in questions: |
|
probability = 1.0 / num_choices |
|
total_probability += probability |
|
|
|
average_accuracy = total_probability / len(questions) |
|
return average_accuracy |
|
|
|
|
|
|
|
total_questions = 242 |
|
questionnaire = [(1, 4), (2, 1), (3, 4), (4, 2), (5, 3), (6, 3), (7, 4), (8, 2), (9, 4), (10, 2), (11, 4), (12, 4), (13, 2), (14, 2), (15, 4), (16, 4), (17, 2), (18, 2), (19, 2), (20, 1), (21, 2), (22, 4), (23, 1), (24, 4), (25, 3), (26, 3), (27, 2), (28, 3), (29, 2), (30, 1), (31, 2), (32, 3), (33, 3), (34, 2), (35, 4), (36, 3), (37, 1), (38, 2), (39, 1), (40, 2), (41, 1), (42, 3), (43, 3), (44, 1), (45, 3), (46, 1), (47, 4), (48, 2), (49, 2), (50, 4), (51, 2), (52, 4), (53, 1), (54, 4), (55, 3), (56, 3), (57, 3), (58, 1), (59, 2), (60, 4), (61, 1), (62, 3), (63, 1), (64, 3), (65, 1), (66, 3), (67, 4), (68, 1), (69, 1), (70, 1), (71, 3), (72, 2), (73, 1), (74, 2), (75, 3), (76, 3), (77, 3), (78, 4), (79, 1), (80, 4), (81, 4), (82, 4), (83, 2), (84, 3), (85, 2), (86, 1), (87, 1), (88, 2), (89, 2), (90, 2), (91, 4), (92, 4), (93, 3), (94, 2), (95, 3), (96, 3), (97, 2), (98, 4), (99, 4), (100, 3), (101, 4), (102, 2), (103, 4), (104, 2), (105, 3), (106, 2), (107, 3), (108, 4), (109, 4), (110, 2)] |
|
questionnairev2 = [(1, 4), (2, 4), (3, 2), (4, 3), (5, 2), (6, 4), (7, 3), (8, 2), (9, 3), (10, 2), (11, 1), (12, 2), (13, 3), (14, 2), (15, 4), (16, 2), (17, 2), (18, 4), (19, 4), (20, 3), (21, 4), (22, 3), (23, 3), (24, 3), (25, 1), (26, 1), (27, 2), (28, 2), (29, 2), (30, 2), (31, 2), (32, 4), (33, 3), (34, 3), (35, 3), (36, 3), (37, 4), (38, 3), (39, 3), (40, 4), (41, 1), (42, 2), (43, 3), (44, 2), (45, 1), (46, 1), (47, 2), (48, 4), (49, 2), (50, 1), (51, 3), (52, 1), (53, 4), (54, 4), (55, 2), (56, 3), (57, 2), (58, 2), (59, 1), (60, 3), (61, 3), (62, 1), (63, 2), (64, 2), (65, 3), (66, 4), (67, 3), (68, 3), (69, 1), (70, 1), (71, 3), (72, 1), (73, 2), (74, 4), (75, 4), (76, 1), (77, 4), (78, 4), (79, 3), (80, 1), (81, 2), (82, 2), (83, 3), (84, 2), (85, 1), (86, 2), (87, 4), (88, 2), (89, 2), (90, 4), (91, 3), (92, 2), (93, 1), (94, 2), (95, 3), (96, 1), (97, 1), (98, 4), (99, 1), (100, 1)] |
|
random_accuracy = estimate_random_accuracy(questionnaire) |
|
random_accuracyv2 = estimate_random_accuracy(questionnairev2) |
|
|
|
|
|
|
|
|
|
if dataset_choice == "secQA": |
|
file_path = "Benchmark.csv" |
|
elif dataset_choice == "CyberMetric80": |
|
file_path = "metric.csv" |
|
|
|
|
|
@st.cache_data |
|
def load_data(file_path): |
|
df = pd.read_csv(file_path) |
|
|
|
|
|
df = df.loc[:, ~df.columns.str.contains('Unnamed', na=False)] |
|
|
|
|
|
df.columns = df.columns.str.strip() |
|
df.rename(columns={ |
|
"model name": "Model", |
|
"source": "Type", |
|
"v1 metric": "V1 Accuracy", |
|
"v2 metric": "V2 Accuracy" |
|
}, inplace=True) |
|
|
|
|
|
for col in ["V1 Accuracy", "V2 Accuracy"]: |
|
if col in df.columns: |
|
df[col] = df[col].astype(str).str.replace("%", "").str.strip() |
|
df[col] = pd.to_numeric(df[col], errors='coerce') / 100 |
|
|
|
return df |
|
|
|
|
|
df = load_data(file_path) |
|
|
|
|
|
source_filter = source_filter_placeholder.multiselect( |
|
"Select Model Type", |
|
options=df["Type"].unique().tolist(), |
|
default=df["Type"].unique().tolist() |
|
) |
|
|
|
|
|
df_filtered = df[df["Type"].isin(source_filter)] if source_filter else df |
|
|
|
|
|
|
|
if dataset_choice == "CyberMetric80": |
|
df_filtered["Accuracy"] = df_filtered["V1 Accuracy"] |
|
else: |
|
df_filtered["Accuracy"] = df_filtered["V1 Accuracy"] if dataset_version == "v1" else df_filtered["V2 Accuracy"] |
|
|
|
df_filtered = df_filtered[["Model", "Type", "Accuracy"]].dropna() |
|
|
|
|
|
df_filtered = df_filtered.sort_values("Accuracy", ascending=False).reset_index(drop=True) |
|
|
|
|
|
df_filtered['Rank'] = df_filtered['Accuracy'].rank(method='dense', ascending=False).astype(int) |
|
df_filtered = df_filtered[['Rank', 'Model', 'Type', 'Accuracy']] |
|
|
|
|
|
|
|
tab1, tab2 = st.tabs(["Leaderboard", "About"]) |
|
|
|
with tab1: |
|
if dataset_choice == "secQA": |
|
st.markdown("#### [View the SECQA Dataset](https://huggingface.co/datasets/zefang-liu/secqa)") |
|
elif dataset_choice == "CyberMetric80": |
|
st.markdown("#### [View the CyberMetric Dataset](https://github.com/cybermetric/CyberMetric)") |
|
|
|
|
|
col1, col2 = st.columns([2, 1]) |
|
|
|
with col1: |
|
st.subheader(f"Leaderboard for {dataset_choice.upper()} Version {dataset_version}") |
|
st.dataframe(df_filtered.style.hide(axis='index')) |
|
|
|
with col2: |
|
st.subheader("Model Details") |
|
selected_model = st.selectbox("Select a Model", df_filtered["Model"].tolist()) |
|
model_details = df_filtered[df_filtered["Model"] == selected_model].iloc[0] |
|
st.write(f"**Model:** {model_details['Model']}") |
|
st.write(f"**Type:** {model_details['Type']}") |
|
st.write(f"**Accuracy:** {model_details['Accuracy']:.2%}") |
|
st.write(f"**Rank:** {model_details['Rank']}") |
|
|
|
st.divider() |
|
|
|
if dataset_choice == "secQA": |
|
st.markdown("### Random Baseline Accuracy") |
|
st.markdown("**{:.2%}** (computed with random guessing on SECQAv1)".format(random_accuracy)) |
|
st.markdown("**{:.2%}** (computed with random guessing on SECQAv2)".format(random_accuracyv2)) |
|
|
|
|
|
st.markdown("---") |
|
st.info("More dataset benchmarks will be added to this hub in the future.") |
|
|
|
with tab2: |
|
st.title("About the Cyber Benchmark Hub") |
|
st.markdown(""" |
|
Welcome to the **Cyber Benchmark Hub: Leaderboard**! |
|
|
|
This application benchmarks language models on their performance across cybersecurity question-answering tasks using the [SECQA dataset](https://huggingface.co/datasets/zefang-liu/secqa). It provides an interactive interface to explore model accuracy, rank models, and understand how different model types perform on security-centric multiple-choice questions. |
|
|
|
|
|
### Leaderboard Features |
|
|
|
- Compare **different models** (e.g., GPT, Claude, Mistral) based on SECQA v1 or v2. |
|
- Filter by **model type/source** (open-source, closed) |
|
- View **dense rankings** where models with equal accuracy share the same rank. |
|
- See detailed information for each model, including: |
|
- Accuracy score |
|
- Rank |
|
|
|
|
|
### Random Baseline Accuracy |
|
|
|
The app computes the **expected accuracy** if a model guessed randomly on all questions: |
|
|
|
This helps contextualize the actual performance of models. |
|
|
|
|
|
|
|
### Built by |
|
|
|
[Priam.ai](https://www.priam.ai/) |
|
|
|
*This benchmark hub will continue to expand as more models and datasets are released in the cybersecurity NLP space.* |
|
""") |
|
|