Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import tyro | |
import imageio | |
import numpy as np | |
import tqdm | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as TF | |
from safetensors.torch import load_file | |
import rembg | |
import gradio as gr | |
# download checkpoints | |
from huggingface_hub import hf_hub_download | |
ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16.safetensors") | |
# NOTE: no -e... else it's not working! | |
os.system("pip install ./diff-gaussian-rasterization") | |
import kiui | |
from kiui.op import recenter | |
from kiui.cam import orbit_camera | |
from core.options import AllConfigs, Options | |
from core.models import LGM | |
from mvdream.pipeline_mvdream import MVDreamPipeline | |
import spaces | |
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) | |
GRADIO_VIDEO_PATH = 'gradio_output.mp4' | |
GRADIO_PLY_PATH = 'gradio_output.ply' | |
# opt = tyro.cli(AllConfigs) | |
opt = Options( | |
input_size=256, | |
up_channels=(1024, 1024, 512, 256, 128), # one more decoder | |
up_attention=(True, True, True, False, False), | |
splat_size=128, | |
output_size=512, # render & supervise Gaussians at a higher resolution. | |
batch_size=8, | |
num_views=8, | |
gradient_accumulation_steps=1, | |
mixed_precision='bf16', | |
resume=ckpt_path, | |
) | |
# model | |
model = LGM(opt) | |
# resume pretrained checkpoint | |
if opt.resume is not None: | |
if opt.resume.endswith('safetensors'): | |
ckpt = load_file(opt.resume, device='cpu') | |
else: | |
ckpt = torch.load(opt.resume, map_location='cpu') | |
model.load_state_dict(ckpt, strict=False) | |
print(f'[INFO] Loaded checkpoint from {opt.resume}') | |
else: | |
print(f'[WARN] model randomly initialized, are you sure?') | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = model.half().to(device) | |
model.eval() | |
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy)) | |
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device) | |
proj_matrix[0, 0] = 1 / tan_half_fov | |
proj_matrix[1, 1] = 1 / tan_half_fov | |
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear) | |
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear) | |
proj_matrix[2, 3] = 1 | |
# load dreams | |
pipe_text = MVDreamPipeline.from_pretrained( | |
'ashawkey/mvdream-sd2.1-diffusers', # remote weights | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
# local_files_only=True, | |
) | |
pipe_text = pipe_text.to(device) | |
pipe_image = MVDreamPipeline.from_pretrained( | |
"ashawkey/imagedream-ipmv-diffusers", # remote weights | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
# local_files_only=True, | |
) | |
pipe_image = pipe_image.to(device) | |
# load rembg | |
bg_remover = rembg.new_session() | |
# process function | |
def process(input_image, prompt, prompt_neg='', input_elevation=0, input_num_steps=30, input_seed=42): | |
# seed | |
kiui.seed_everything(input_seed) | |
os.makedirs(opt.workspace, exist_ok=True) | |
output_video_path = os.path.join(opt.workspace, GRADIO_VIDEO_PATH) | |
output_ply_path = os.path.join(opt.workspace, GRADIO_PLY_PATH) | |
# text-conditioned | |
if input_image is None: | |
mv_image_uint8 = pipe_text(prompt, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=7.5, elevation=input_elevation) | |
mv_image_uint8 = (mv_image_uint8 * 255).astype(np.uint8) | |
# bg removal | |
mv_image = [] | |
for i in range(4): | |
image = rembg.remove(mv_image_uint8[i], session=bg_remover) # [H, W, 4] | |
# to white bg | |
image = image.astype(np.float32) / 255 | |
image = recenter(image, image[..., 0] > 0, border_ratio=0.2) | |
image = image[..., :3] * image[..., -1:] + (1 - image[..., -1:]) | |
mv_image.append(image) | |
# image-conditioned (may also input text, but no text usually works too) | |
else: | |
input_image = np.array(input_image) # uint8 | |
# bg removal | |
carved_image = rembg.remove(input_image, session=bg_remover) # [H, W, 4] | |
mask = carved_image[..., -1] > 0 | |
image = recenter(carved_image, mask, border_ratio=0.2) | |
image = image.astype(np.float32) / 255.0 | |
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) | |
mv_image = pipe_image(prompt, image, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=5.0, elevation=input_elevation) | |
mv_image_grid = np.concatenate([ | |
np.concatenate([mv_image[1], mv_image[2]], axis=1), | |
np.concatenate([mv_image[3], mv_image[0]], axis=1), | |
], axis=0) | |
# generate gaussians | |
input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32 | |
input_image = torch.from_numpy(input_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256] | |
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False) | |
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) | |
rays_embeddings = model.prepare_default_rays(device, elevation=input_elevation) | |
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W] | |
with torch.no_grad(): | |
with torch.autocast(device_type='cuda', dtype=torch.float16): | |
# generate gaussians | |
gaussians = model.forward_gaussians(input_image) | |
# save gaussians | |
model.gs.save_ply(gaussians, output_ply_path) | |
# render 360 video | |
images = [] | |
elevation = 0 | |
if opt.fancy_video: | |
azimuth = np.arange(0, 720, 4, dtype=np.int32) | |
for azi in tqdm.tqdm(azimuth): | |
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device) | |
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction | |
# cameras needed by gaussian rasterizer | |
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4] | |
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4] | |
cam_pos = - cam_poses[:, :3, 3] # [V, 3] | |
scale = min(azi / 360, 1) | |
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image'] | |
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8)) | |
else: | |
azimuth = np.arange(0, 360, 2, dtype=np.int32) | |
for azi in tqdm.tqdm(azimuth): | |
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device) | |
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction | |
# cameras needed by gaussian rasterizer | |
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4] | |
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4] | |
cam_pos = - cam_poses[:, :3, 3] # [V, 3] | |
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image'] | |
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8)) | |
images = np.concatenate(images, axis=0) | |
imageio.mimwrite(output_video_path, images, fps=30) | |
return mv_image_grid, output_video_path, output_ply_path | |
# gradio UI | |
_TITLE = '''LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation''' | |
_DESCRIPTION = ''' | |
<div> | |
<a style="display:inline-block" href="https://me.kiui.moe/lgm/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a> | |
<a style="display:inline-block; margin-left: .5em" href="https://github.com/3DTopia/LGM"><img src='https://img.shields.io/github/stars/3DTopia/LGM?style=social'/></a> | |
</div> | |
* Input can be only text, only image, or both image and text. | |
* If you find the output unsatisfying, try using different seeds! | |
''' | |
block = gr.Blocks(title=_TITLE).queue() | |
with block: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=1): | |
# input image | |
input_image = gr.Image(label="image", type='pil') | |
# input prompt | |
input_text = gr.Textbox(label="prompt") | |
# negative prompt | |
input_neg_text = gr.Textbox(label="negative prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate') | |
# elevation | |
input_elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0) | |
# inference steps | |
input_num_steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=30) | |
# random seed | |
input_seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0) | |
# gen button | |
button_gen = gr.Button("Generate") | |
with gr.Column(scale=1): | |
with gr.Tab("Video"): | |
# final video results | |
output_video = gr.Video(label="video") | |
# ply file | |
output_file = gr.File(label="ply") | |
with gr.Tab("Multi-view Image"): | |
# multi-view results | |
output_image = gr.Image(interactive=False, show_label=False) | |
button_gen.click(process, inputs=[input_image, input_text, input_neg_text, input_elevation, input_num_steps, input_seed], outputs=[output_image, output_video, output_file]) | |
gr.Examples( | |
examples=[ | |
"data_test/anya_rgba.png", | |
"data_test/bird_rgba.png", | |
"data_test/catstatue_rgba.png", | |
], | |
inputs=[input_image], | |
outputs=[output_image, output_video, output_file], | |
fn=lambda x: process(input_image=x, prompt=''), | |
cache_examples=False, | |
label='Image-to-3D Examples' | |
) | |
gr.Examples( | |
examples=[ | |
"a motorbike", | |
"a hamburger", | |
"a furry red fox head", | |
], | |
inputs=[input_text], | |
outputs=[output_image, output_video, output_file], | |
fn=lambda x: process(input_image=None, prompt=x), | |
cache_examples=False, | |
label='Text-to-3D Examples' | |
) | |
block.launch() |