Spaces:
Running
Running
import os | |
from utils import process_image, run_model | |
from typing import Tuple, Optional | |
from PIL import Image | |
from boto3 import Session | |
import torch | |
import pickle | |
import datetime | |
import gzip | |
# Retrieve credentials from environment variables | |
session = Session( | |
aws_access_key_id=os.getenv('AWS_ACCESS_KEY_ID'), | |
aws_secret_access_key=os.getenv('AWS_SECRET_ACCESS_KEY'), | |
region_name=os.getenv('AWS_DEFAULT_REGION') | |
) | |
s3 = session.client('s3') | |
def load_model(): | |
with gzip.open('model_quantized_compressed.pkl.gz', 'rb') as f_in: | |
model_data = f_in.read() | |
model = pickle.loads(model_data) | |
print("Model Loaded") | |
return model | |
def upload_to_s3(file_path, bucket_name, s3_key): | |
with open(file_path, 'rb') as f: | |
s3.upload_fileobj(f, bucket_name, s3_key) | |
s3_url = f's3://{bucket_name}/{s3_key}' | |
return s3_url | |
def generate_mesh(image_path:str, | |
output_dir:str ='tmp/output/', | |
no_remove_bg:bool =True, | |
foreground_ratio:float =0.85 , | |
render:bool =False , | |
mc_resolution:int =256 , | |
bake_texture_flag:bool =False , | |
texture_resolution:int =2048, | |
model=None, | |
bucket_name:str=None, | |
input_folder:str=None, | |
output_folder:str=None, | |
input_s3_id:str='input_image.png', | |
output_s3_id:str='output_mesh.obj', | |
output_video_s3_id:str=None | |
) -> Tuple[Optional[str], Optional[str]] : | |
print('Process start') | |
image = process_image(image_path=image_path, | |
output_dir=output_dir , | |
no_remove_bg=no_remove_bg , | |
foreground_ratio=foreground_ratio) | |
print('Process end') | |
print('Run start') | |
output_file_path ,output_video_path = run_model(model=model, | |
image=image, | |
output_dir=output_dir , | |
device="cuda:0" if torch.cuda.is_available() else "cpu", | |
render=render , | |
mc_resolution=mc_resolution , | |
model_save_format='obj', | |
bake_texture_flag=bake_texture_flag , | |
texture_resolution=texture_resolution) | |
print('Run end') | |
print('Uploading to bucket...') | |
# Upload the input image and generated mesh file to S3 | |
if input_folder != None: | |
input_s3_key = input_folder + '/' + input_s3_id | |
else: | |
input_s3_key = input_s3_id | |
if output_folder != None: | |
output_s3_key = output_folder + '/' + output_s3_id | |
else: | |
output_s3_key = output_s3_id | |
output_video_s3_key = output_video_s3_id | |
input_s3_url = upload_to_s3(image_path, bucket_name, input_s3_key) | |
output_s3_url = upload_to_s3(output_file_path, bucket_name, output_s3_key) | |
if output_video_path != None: | |
if output_folder != None: | |
output_video_s3_key = output_folder + '/' + output_video_s3_id | |
else: | |
output_video_s3_key = output_video_s3_id | |
output_video_s3_url = upload_to_s3(output_video_path, bucket_name, output_video_s3_key) | |
print(f'Files uploaded to S3:\nInput Image: {input_s3_url}\nOutput Mesh: {output_s3_url}\nOutput Video: {output_video_s3_url}') | |
return output_file_path ,output_video_path |