Spaces:
Running
Running
from dataclasses import dataclass | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from ..utils import BaseModule | |
class TriplaneUpsampleNetwork(BaseModule): | |
class Config(BaseModule.Config): | |
in_channels: int | |
out_channels: int | |
cfg: Config | |
def configure(self) -> None: | |
self.upsample = nn.ConvTranspose2d( | |
self.cfg.in_channels, self.cfg.out_channels, kernel_size=2, stride=2 | |
) | |
def forward(self, triplanes: torch.Tensor) -> torch.Tensor: | |
triplanes_up = rearrange( | |
self.upsample( | |
rearrange(triplanes, "B Np Ci Hp Wp -> (B Np) Ci Hp Wp", Np=3) | |
), | |
"(B Np) Co Hp Wp -> B Np Co Hp Wp", | |
Np=3, | |
) | |
return triplanes_up | |
class NeRFMLP(BaseModule): | |
class Config(BaseModule.Config): | |
in_channels: int | |
n_neurons: int | |
n_hidden_layers: int | |
activation: str = "relu" | |
bias: bool = True | |
weight_init: Optional[str] = "kaiming_uniform" | |
bias_init: Optional[str] = None | |
cfg: Config | |
def configure(self) -> None: | |
layers = [ | |
self.make_linear( | |
self.cfg.in_channels, | |
self.cfg.n_neurons, | |
bias=self.cfg.bias, | |
weight_init=self.cfg.weight_init, | |
bias_init=self.cfg.bias_init, | |
), | |
self.make_activation(self.cfg.activation), | |
] | |
for i in range(self.cfg.n_hidden_layers - 1): | |
layers += [ | |
self.make_linear( | |
self.cfg.n_neurons, | |
self.cfg.n_neurons, | |
bias=self.cfg.bias, | |
weight_init=self.cfg.weight_init, | |
bias_init=self.cfg.bias_init, | |
), | |
self.make_activation(self.cfg.activation), | |
] | |
layers += [ | |
self.make_linear( | |
self.cfg.n_neurons, | |
4, # density 1 + features 3 | |
bias=self.cfg.bias, | |
weight_init=self.cfg.weight_init, | |
bias_init=self.cfg.bias_init, | |
) | |
] | |
self.layers = nn.Sequential(*layers) | |
def make_linear( | |
self, | |
dim_in, | |
dim_out, | |
bias=True, | |
weight_init=None, | |
bias_init=None, | |
): | |
layer = nn.Linear(dim_in, dim_out, bias=bias) | |
if weight_init is None: | |
pass | |
elif weight_init == "kaiming_uniform": | |
torch.nn.init.kaiming_uniform_(layer.weight, nonlinearity="relu") | |
else: | |
raise NotImplementedError | |
if bias: | |
if bias_init is None: | |
pass | |
elif bias_init == "zero": | |
torch.nn.init.zeros_(layer.bias) | |
else: | |
raise NotImplementedError | |
return layer | |
def make_activation(self, activation): | |
if activation == "relu": | |
return nn.ReLU(inplace=True) | |
elif activation == "silu": | |
return nn.SiLU(inplace=True) | |
else: | |
raise NotImplementedError | |
def forward(self, x): | |
inp_shape = x.shape[:-1] | |
x = x.reshape(-1, x.shape[-1]) | |
features = self.layers(x) | |
features = features.reshape(*inp_shape, -1) | |
out = {"density": features[..., 0:1], "features": features[..., 1:4]} | |
return out | |