Spaces:
Running
Running
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# -------- | |
# | |
# Modified 2024 by the Tripo AI and Stability AI Team. | |
# | |
# Copyright (c) 2024 Tripo AI & Stability AI | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from .attention import Attention | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", | |
final_dropout: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
assert norm_type == "layer_norm" | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=( | |
cross_attention_dim if not double_self_attention else None | |
), | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
norm_hidden_states = self.norm1(hidden_states) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=( | |
encoder_hidden_states if self.only_cross_attention else None | |
), | |
attention_mask=attention_mask, | |
) | |
hidden_states = attn_output + hidden_states | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = self.norm2(hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
ff_output = torch.cat( | |
[ | |
self.ff(hid_slice) | |
for hid_slice in norm_hidden_states.chunk( | |
num_chunks, dim=self._chunk_dim | |
) | |
], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
linear_cls = nn.Linear | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh") | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(linear_cls(inner_dim, dim_out)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
class GELU(nn.Module): | |
r""" | |
GELU activation function with tanh approximation support with `approximate="tanh"`. | |
Parameters: | |
dim_in (`int`): The number of channels in the input. | |
dim_out (`int`): The number of channels in the output. | |
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation. | |
""" | |
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out) | |
self.approximate = approximate | |
def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
if gate.device.type != "mps": | |
return F.gelu(gate, approximate=self.approximate) | |
# mps: gelu is not implemented for float16 | |
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to( | |
dtype=gate.dtype | |
) | |
def forward(self, hidden_states): | |
hidden_states = self.proj(hidden_states) | |
hidden_states = self.gelu(hidden_states) | |
return hidden_states | |
class GEGLU(nn.Module): | |
r""" | |
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. | |
Parameters: | |
dim_in (`int`): The number of channels in the input. | |
dim_out (`int`): The number of channels in the output. | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
linear_cls = nn.Linear | |
self.proj = linear_cls(dim_in, dim_out * 2) | |
def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
if gate.device.type != "mps": | |
return F.gelu(gate) | |
# mps: gelu is not implemented for float16 | |
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) | |
def forward(self, hidden_states, scale: float = 1.0): | |
args = () | |
hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1) | |
return hidden_states * self.gelu(gate) | |
class ApproximateGELU(nn.Module): | |
r""" | |
The approximate form of Gaussian Error Linear Unit (GELU). For more details, see section 2: | |
https://arxiv.org/abs/1606.08415. | |
Parameters: | |
dim_in (`int`): The number of channels in the input. | |
dim_out (`int`): The number of channels in the output. | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.proj(x) | |
return x * torch.sigmoid(1.702 * x) | |