Spaces:
Running
Running
ashhadahsan
commited on
Commit
Β·
c1dd675
1
Parent(s):
cc5f850
Update pages/1_π_predict.py
Browse files- pages/1_π_predict.py +129 -155
pages/1_π_predict.py
CHANGED
@@ -1,37 +1,36 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
|
|
3 |
from transformers import pipeline
|
4 |
from stqdm import stqdm
|
5 |
from simplet5 import SimpleT5
|
6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
from transformers import BertTokenizer, TFBertForSequenceClassification
|
8 |
-
from datetime import datetime
|
9 |
import logging
|
10 |
-
from transformers import TextClassificationPipeline
|
11 |
-
import gc
|
12 |
from datasets import load_dataset
|
13 |
-
|
14 |
-
from utils.openllmapi.exceptions import *
|
15 |
-
import time
|
16 |
from typing import List
|
17 |
from collections import OrderedDict
|
|
|
18 |
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
truncation=True,
|
23 |
-
padding=True,
|
24 |
-
)
|
25 |
SLEEP = 2
|
26 |
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
del obj
|
30 |
gc.collect()
|
31 |
|
32 |
|
33 |
@st.cache_data
|
34 |
-
def
|
35 |
data = load_dataset("ashhadahsan/amazon_theme")
|
36 |
data = data["train"].to_pandas()
|
37 |
labels = [x for x in list(set(data.iloc[:, 1].values.tolist())) if x != "Unknown"]
|
@@ -40,108 +39,97 @@ def getAllCats():
|
|
40 |
|
41 |
|
42 |
@st.cache_data
|
43 |
-
def
|
44 |
-
data = load_dataset("ashhadahsan/
|
45 |
data = data["train"].to_pandas()
|
46 |
labels = [x for x in list(set(data.iloc[:, 1].values.tolist())) if x != "Unknown"]
|
47 |
del data
|
48 |
return labels
|
49 |
|
50 |
|
51 |
-
def assignHF(bot, what: str, to: str, old: List):
|
52 |
-
try:
|
53 |
-
old = ", ".join(old)
|
54 |
-
message_content = bot.chat(
|
55 |
-
f"""'Assign a one-line {what} to this summary of the text of a review
|
56 |
-
{to}
|
57 |
-
already assigned themes are , {old}
|
58 |
-
theme""",
|
59 |
-
)
|
60 |
-
try:
|
61 |
-
return message_content.split(":")[1].strip()
|
62 |
-
except:
|
63 |
-
return message_content.strip()
|
64 |
-
except ChatError:
|
65 |
-
return ""
|
66 |
-
|
67 |
-
|
68 |
-
def assignOpen(bot, what: str, to: str, old: List):
|
69 |
-
old = ", ".join(old)
|
70 |
-
template = """'Assign a one-line {what} to this summary of the text of a review
|
71 |
-
{to}
|
72 |
-
already assigned themes are , {old}
|
73 |
-
theme"""
|
74 |
-
prompt = PromptTemplate(template=template, input_variables=["what", "to", "old"])
|
75 |
-
llm_chain = LLMChain(prompt=prompt, llm=bot)
|
76 |
-
generated = llm_chain.run(what=what, to=summary, old=old)
|
77 |
-
return generated
|
78 |
-
|
79 |
-
|
80 |
-
@st.cache_resource
|
81 |
-
def loadZeroShotClassification():
|
82 |
-
classifierzero = pipeline(
|
83 |
-
"zero-shot-classification", model="facebook/bart-large-mnli"
|
84 |
-
)
|
85 |
-
return classifierzero
|
86 |
-
|
87 |
-
|
88 |
@st.cache_resource
|
89 |
-
def
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
temperature=0.94,
|
94 |
-
repetition_penalty=1.2,
|
95 |
)
|
96 |
-
return
|
97 |
|
98 |
|
99 |
-
def
|
100 |
assigned = zero(to, old)
|
101 |
-
|
102 |
-
od = OrderedDict(sorted(
|
103 |
print(list(od.keys())[0])
|
104 |
print(type(list(od.keys())[0]))
|
105 |
|
106 |
return list(od.keys())[0]
|
107 |
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
|
112 |
@st.cache_resource
|
113 |
def load_t5() -> (AutoModelForSeq2SeqLM, AutoTokenizer):
|
114 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
|
|
|
115 |
|
116 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
117 |
return model, tokenizer
|
118 |
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
@st.cache_resource
|
121 |
def summarizationModel():
|
122 |
-
return pipeline(
|
|
|
|
|
|
|
123 |
|
124 |
|
125 |
@st.cache_resource
|
126 |
def convert_df(df: pd.DataFrame):
|
127 |
-
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
128 |
return df.to_csv(index=False).encode("utf-8")
|
129 |
|
130 |
|
131 |
def load_one_line_summarizer(model):
|
132 |
-
return model.load_model(
|
|
|
|
|
|
|
133 |
|
134 |
|
135 |
@st.cache_resource
|
136 |
def classify_theme() -> TextClassificationPipeline:
|
137 |
tokenizer = BertTokenizer.from_pretrained(
|
138 |
-
"ashhadahsan/amazon-theme-bert-base-finetuned"
|
139 |
)
|
140 |
model = TFBertForSequenceClassification.from_pretrained(
|
141 |
-
"ashhadahsan/amazon-theme-bert-base-finetuned"
|
142 |
)
|
143 |
pipeline = TextClassificationPipeline(
|
144 |
-
model=model,
|
|
|
|
|
145 |
)
|
146 |
return pipeline
|
147 |
|
@@ -149,46 +137,37 @@ def classify_theme() -> TextClassificationPipeline:
|
|
149 |
@st.cache_resource
|
150 |
def classify_sub_theme() -> TextClassificationPipeline:
|
151 |
tokenizer = BertTokenizer.from_pretrained(
|
152 |
-
"ashhadahsan/amazon-subtheme-bert-base-finetuned"
|
153 |
)
|
154 |
model = TFBertForSequenceClassification.from_pretrained(
|
155 |
-
"ashhadahsan/amazon-subtheme-bert-base-finetuned"
|
156 |
)
|
157 |
pipeline = TextClassificationPipeline(
|
158 |
-
model=model, tokenizer=tokenizer,
|
159 |
)
|
160 |
return pipeline
|
161 |
|
162 |
|
163 |
st.set_page_config(layout="wide", page_title="Amazon Review | Summarizer")
|
164 |
-
st.title("Amazon Review Summarizer")
|
165 |
|
166 |
-
uploaded_file = st.file_uploader("Choose a file", type=["xlsx", "xls", "csv"])
|
167 |
|
168 |
-
# try:
|
169 |
-
# bot = ChatBot(
|
170 |
-
# cookies={
|
171 |
-
# "hf-chat": st.secrets["hf-chat"],
|
172 |
-
# "token": st.secrets["token"],
|
173 |
-
# }
|
174 |
-
# )
|
175 |
-
# except ChatBotInitError as e:
|
176 |
-
# print(e)
|
177 |
|
178 |
summarizer_option = st.selectbox(
|
179 |
-
"Select Summarizer",
|
180 |
-
("Custom trained on the dataset", "t5-base", "t5-one-line-summary"),
|
181 |
)
|
182 |
-
col1, col2, col3 = st.columns([1, 1, 1])
|
183 |
|
184 |
with col1:
|
185 |
-
summary_yes = st.checkbox("Summrization", value=False)
|
186 |
|
187 |
with col2:
|
188 |
-
classification = st.checkbox("Classify Category", value=True)
|
189 |
|
190 |
with col3:
|
191 |
-
sub_theme = st.checkbox("Sub theme classification", value=True)
|
192 |
|
193 |
treshold = st.slider(
|
194 |
label="Model Confidence value",
|
@@ -202,23 +181,22 @@ treshold = st.slider(
|
|
202 |
ps = st.empty()
|
203 |
|
204 |
if st.button("Process", type="primary"):
|
205 |
-
themes =
|
206 |
-
subthemes =
|
207 |
-
# st.write(themes)
|
208 |
|
209 |
oneline = SimpleT5()
|
210 |
load_one_line_summarizer(model=oneline)
|
211 |
-
zeroline =
|
212 |
-
bot =
|
213 |
|
214 |
cancel_button = st.empty()
|
215 |
cancel_button2 = st.empty()
|
216 |
cancel_button3 = st.empty()
|
217 |
if uploaded_file is not None:
|
218 |
if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:
|
219 |
-
df = pd.read_excel(uploaded_file, engine="openpyxl")
|
220 |
if uploaded_file.name.split(".")[-1] in [".csv"]:
|
221 |
-
df = pd.read_csv(uploaded_file)
|
222 |
columns = df.columns.values.tolist()
|
223 |
columns = [x.lower() for x in columns]
|
224 |
df.columns = columns
|
@@ -234,7 +212,7 @@ if st.button("Process", type="primary"):
|
|
234 |
progress_text = "Summarization in progress. Please wait."
|
235 |
summary = []
|
236 |
|
237 |
-
for x in stqdm(range(len(text))):
|
238 |
if cancel_button.button("Cancel", key=x):
|
239 |
del model
|
240 |
break
|
@@ -256,28 +234,28 @@ if st.button("Process", type="primary"):
|
|
256 |
classesUnlabel = []
|
257 |
classesUnlabelZero = []
|
258 |
for x in stqdm(
|
259 |
-
text,
|
260 |
desc="Assigning Themes ...",
|
261 |
total=len(text),
|
262 |
colour="#BF1A1A",
|
263 |
):
|
264 |
-
output = themePipe(x)[0][
|
265 |
classes.append(output)
|
266 |
-
score = round(themePipe(x)[0][
|
267 |
if score <= treshold:
|
268 |
-
onelineoutput = oneline.predict(x)[0]
|
269 |
-
|
270 |
print("hit")
|
271 |
classesUnlabel.append(
|
272 |
-
|
273 |
-
bot
|
274 |
what="theme",
|
275 |
to=onelineoutput,
|
276 |
old=themes,
|
277 |
)
|
278 |
)
|
279 |
classesUnlabelZero.append(
|
280 |
-
|
281 |
zero=zeroline, to=onelineoutput, old=themes
|
282 |
)
|
283 |
)
|
@@ -289,37 +267,35 @@ if st.button("Process", type="primary"):
|
|
289 |
outputdf["Review Theme"] = classes
|
290 |
outputdf["Review Theme-issue-new"] = classesUnlabel
|
291 |
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
292 |
-
|
293 |
if sub_theme:
|
294 |
subThemePipe = classify_sub_theme()
|
295 |
classes = []
|
296 |
classesUnlabel = []
|
297 |
classesUnlabelZero = []
|
298 |
for x in stqdm(
|
299 |
-
text,
|
300 |
desc="Assigning Subthemes ...",
|
301 |
total=len(text),
|
302 |
colour="green",
|
303 |
):
|
304 |
-
output = subThemePipe(x)[0][
|
305 |
classes.append(output)
|
306 |
-
score = round(subThemePipe(x)[0][
|
307 |
if score <= treshold:
|
308 |
onelineoutput = oneline.predict(x)[0]
|
309 |
|
310 |
-
time.sleep(SLEEP)
|
311 |
-
|
312 |
print("hit")
|
313 |
classesUnlabel.append(
|
314 |
-
|
315 |
-
bot
|
316 |
what="subtheme",
|
317 |
to=onelineoutput,
|
318 |
old=subthemes,
|
319 |
)
|
320 |
)
|
321 |
classesUnlabelZero.append(
|
322 |
-
|
323 |
zero=zeroline,
|
324 |
to=onelineoutput,
|
325 |
old=subthemes,
|
@@ -334,7 +310,7 @@ if st.button("Process", type="primary"):
|
|
334 |
outputdf["Review SubTheme-issue-new"] = classesUnlabel
|
335 |
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
336 |
|
337 |
-
|
338 |
|
339 |
csv = convert_df(outputdf)
|
340 |
st.download_button(
|
@@ -380,25 +356,24 @@ if st.button("Process", type="primary"):
|
|
380 |
for x in stqdm(
|
381 |
text, desc="Assigning Themes ...", total=len(text), colour="red"
|
382 |
):
|
383 |
-
output = themePipe(x)[0][
|
384 |
classes.append(output)
|
385 |
-
score = round(themePipe(x)[0][
|
386 |
if score <= treshold:
|
387 |
onelineoutput = oneline.predict(x)[0]
|
388 |
|
389 |
print("hit")
|
390 |
-
time.sleep(SLEEP)
|
391 |
|
392 |
classesUnlabel.append(
|
393 |
-
|
394 |
-
bot
|
395 |
what="theme",
|
396 |
to=onelineoutput,
|
397 |
old=themes,
|
398 |
)
|
399 |
)
|
400 |
classesUnlabelZero.append(
|
401 |
-
|
402 |
zero=zeroline, to=onelineoutput, old=themes
|
403 |
)
|
404 |
)
|
@@ -409,7 +384,7 @@ if st.button("Process", type="primary"):
|
|
409 |
outputdf["Review Theme"] = classes
|
410 |
outputdf["Review Theme-issue-new"] = classesUnlabel
|
411 |
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
412 |
-
|
413 |
|
414 |
if sub_theme:
|
415 |
subThemePipe = classify_sub_theme()
|
@@ -422,24 +397,23 @@ if st.button("Process", type="primary"):
|
|
422 |
total=len(text),
|
423 |
colour="green",
|
424 |
):
|
425 |
-
output = subThemePipe(x)[0][
|
426 |
classes.append(output)
|
427 |
-
score = round(subThemePipe(x)[0][
|
428 |
if score <= treshold:
|
429 |
onelineoutput = oneline.predict(x)[0]
|
430 |
|
431 |
-
time.sleep(SLEEP)
|
432 |
print("hit")
|
433 |
classesUnlabel.append(
|
434 |
-
|
435 |
-
bot
|
436 |
what="subtheme",
|
437 |
to=onelineoutput,
|
438 |
old=subthemes,
|
439 |
)
|
440 |
)
|
441 |
classesUnlabelZero.append(
|
442 |
-
|
443 |
zero=zeroline,
|
444 |
to=onelineoutput,
|
445 |
old=subthemes,
|
@@ -454,7 +428,7 @@ if st.button("Process", type="primary"):
|
|
454 |
outputdf["Review SubTheme-issue-new"] = classesUnlabel
|
455 |
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
456 |
|
457 |
-
|
458 |
|
459 |
csv = convert_df(outputdf)
|
460 |
st.download_button(
|
@@ -471,12 +445,12 @@ if st.button("Process", type="primary"):
|
|
471 |
load_one_line_summarizer(model=model)
|
472 |
|
473 |
summary = []
|
474 |
-
for x in stqdm(range(len(text))):
|
475 |
-
if cancel_button3.button("Cancel", key=x):
|
476 |
del model
|
477 |
break
|
478 |
try:
|
479 |
-
summary.append(model.predict(text[x])[0])
|
480 |
except:
|
481 |
pass
|
482 |
outputdf["summary"] = summary
|
@@ -488,27 +462,28 @@ if st.button("Process", type="primary"):
|
|
488 |
classesUnlabel = []
|
489 |
classesUnlabelZero = []
|
490 |
for x in stqdm(
|
491 |
-
|
|
|
|
|
|
|
492 |
):
|
493 |
-
output = themePipe(x)[0][
|
494 |
classes.append(output)
|
495 |
-
score = round(themePipe(x)[0][
|
496 |
if score <= treshold:
|
497 |
onelineoutput = oneline.predict(x)[0]
|
498 |
|
499 |
-
time.sleep(SLEEP)
|
500 |
-
|
501 |
print("hit")
|
502 |
classesUnlabel.append(
|
503 |
-
|
504 |
-
bot
|
505 |
what="theme",
|
506 |
to=onelineoutput,
|
507 |
old=themes,
|
508 |
)
|
509 |
)
|
510 |
classesUnlabelZero.append(
|
511 |
-
|
512 |
zero=zeroline, to=onelineoutput, old=themes
|
513 |
)
|
514 |
)
|
@@ -526,29 +501,28 @@ if st.button("Process", type="primary"):
|
|
526 |
classesUnlabelZero = []
|
527 |
|
528 |
for x in stqdm(
|
529 |
-
text,
|
530 |
desc="Assigning Subthemes ...",
|
531 |
total=len(text),
|
532 |
colour="green",
|
533 |
):
|
534 |
-
output = subThemePipe(x)[0][
|
535 |
classes.append(output)
|
536 |
-
score = round(subThemePipe(x)[0][
|
537 |
if score <= treshold:
|
538 |
print("hit")
|
539 |
-
onelineoutput = oneline.predict(x)[0]
|
540 |
|
541 |
-
time.sleep(SLEEP)
|
542 |
classesUnlabel.append(
|
543 |
-
|
544 |
-
bot
|
545 |
what="subtheme",
|
546 |
to=onelineoutput,
|
547 |
old=subthemes,
|
548 |
)
|
549 |
)
|
550 |
classesUnlabelZero.append(
|
551 |
-
|
552 |
zero=zeroline,
|
553 |
to=onelineoutput,
|
554 |
old=subthemes,
|
@@ -563,7 +537,7 @@ if st.button("Process", type="primary"):
|
|
563 |
outputdf["Review SubTheme-issue-new"] = classesUnlabel
|
564 |
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
565 |
|
566 |
-
|
567 |
|
568 |
csv = convert_df(outputdf)
|
569 |
st.download_button(
|
@@ -576,11 +550,11 @@ if st.button("Process", type="primary"):
|
|
576 |
|
577 |
except KeyError as e:
|
578 |
st.error(
|
579 |
-
"Please Make sure that your data must have a column named text",
|
580 |
icon="π¨",
|
581 |
)
|
582 |
-
st.info("Text column must have amazon reviews", icon="βΉοΈ")
|
583 |
-
|
584 |
|
585 |
except BaseException as e:
|
586 |
-
logging.exception("An exception was occurred")
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
from transformers import BertTokenizer, TFBertForSequenceClassification
|
4 |
+
from transformers import TextClassificationPipeline
|
5 |
from transformers import pipeline
|
6 |
from stqdm import stqdm
|
7 |
from simplet5 import SimpleT5
|
8 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
9 |
from transformers import BertTokenizer, TFBertForSequenceClassification
|
|
|
10 |
import logging
|
|
|
|
|
11 |
from datasets import load_dataset
|
12 |
+
import gc
|
|
|
|
|
13 |
from typing import List
|
14 |
from collections import OrderedDict
|
15 |
+
from datetime import datetime
|
16 |
|
17 |
+
tokenizer_kwargs = dict(max_length=128, truncation=True, padding=True)
|
18 |
|
19 |
+
|
20 |
+
flan_t5_kwargs = dict(repetition_penalty=1.2)
|
|
|
|
|
|
|
21 |
SLEEP = 2
|
22 |
|
23 |
|
24 |
+
date = datetime.now().strftime(r"%Y-%m-%d")
|
25 |
+
|
26 |
+
|
27 |
+
def clean_memory(obj: TextClassificationPipeline):
|
28 |
del obj
|
29 |
gc.collect()
|
30 |
|
31 |
|
32 |
@st.cache_data
|
33 |
+
def get_all_cats():
|
34 |
data = load_dataset("ashhadahsan/amazon_theme")
|
35 |
data = data["train"].to_pandas()
|
36 |
labels = [x for x in list(set(data.iloc[:, 1].values.tolist())) if x != "Unknown"]
|
|
|
39 |
|
40 |
|
41 |
@st.cache_data
|
42 |
+
def get_all_subcats():
|
43 |
+
data = load_dataset("ashhadahsan/amazon_subtheme")
|
44 |
data = data["train"].to_pandas()
|
45 |
labels = [x for x in list(set(data.iloc[:, 1].values.tolist())) if x != "Unknown"]
|
46 |
del data
|
47 |
return labels
|
48 |
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
@st.cache_resource
|
51 |
+
def load_zero_shot_classification_large():
|
52 |
+
classifier_zero = pipeline(
|
53 |
+
"zero-shot-classification",
|
54 |
+
model="facebook/bart-large-mnli",
|
|
|
|
|
55 |
)
|
56 |
+
return classifier_zero
|
57 |
|
58 |
|
59 |
+
def assign_label_zeroshot(zero, to: str, old: List):
|
60 |
assigned = zero(to, old)
|
61 |
+
assigned_dict = dict(zip(assigned["labels"], assigned["scores"]))
|
62 |
+
od = OrderedDict(sorted(assigned_dict.items(), key=lambda x: x[1], reverse=True))
|
63 |
print(list(od.keys())[0])
|
64 |
print(type(list(od.keys())[0]))
|
65 |
|
66 |
return list(od.keys())[0]
|
67 |
|
68 |
|
69 |
+
def assign_labels_flant5(pipe, what: str, to: str, old: List):
|
70 |
+
old = ", ".join(old)
|
71 |
+
|
72 |
+
return pipe(
|
73 |
+
f"""'Generate a new one word {what} to this summary of the text of a review
|
74 |
+
{to} for context
|
75 |
+
already assigned {what} are , {themes}
|
76 |
+
theme:"""
|
77 |
+
)[0]["generated_text"]
|
78 |
|
79 |
|
80 |
@st.cache_resource
|
81 |
def load_t5() -> (AutoModelForSeq2SeqLM, AutoTokenizer):
|
82 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
83 |
+
"t5-base",
|
84 |
+
)
|
85 |
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
87 |
+
pretrained_model_name_or_path="t5-base",
|
88 |
+
)
|
89 |
return model, tokenizer
|
90 |
|
91 |
|
92 |
+
@st.cache_resource
|
93 |
+
def load_flan_t5_large():
|
94 |
+
return pipeline(
|
95 |
+
task="text2text-generation",
|
96 |
+
model="google/flan-t5-large",
|
97 |
+
model_kwargs=flan_t5_kwargs,
|
98 |
+
)
|
99 |
+
|
100 |
+
|
101 |
@st.cache_resource
|
102 |
def summarizationModel():
|
103 |
+
return pipeline(
|
104 |
+
task="summarization",
|
105 |
+
model="my_awesome_sum/",
|
106 |
+
)
|
107 |
|
108 |
|
109 |
@st.cache_resource
|
110 |
def convert_df(df: pd.DataFrame):
|
|
|
111 |
return df.to_csv(index=False).encode("utf-8")
|
112 |
|
113 |
|
114 |
def load_one_line_summarizer(model):
|
115 |
+
return model.load_model(
|
116 |
+
"t5",
|
117 |
+
"snrspeaks/t5-one-line-summary",
|
118 |
+
)
|
119 |
|
120 |
|
121 |
@st.cache_resource
|
122 |
def classify_theme() -> TextClassificationPipeline:
|
123 |
tokenizer = BertTokenizer.from_pretrained(
|
124 |
+
"ashhadahsan/amazon-theme-bert-base-finetuned",
|
125 |
)
|
126 |
model = TFBertForSequenceClassification.from_pretrained(
|
127 |
+
"ashhadahsan/amazon-theme-bert-base-finetuned",
|
128 |
)
|
129 |
pipeline = TextClassificationPipeline(
|
130 |
+
model=model,
|
131 |
+
tokenizer=tokenizer,
|
132 |
+
**tokenizer_kwargs,
|
133 |
)
|
134 |
return pipeline
|
135 |
|
|
|
137 |
@st.cache_resource
|
138 |
def classify_sub_theme() -> TextClassificationPipeline:
|
139 |
tokenizer = BertTokenizer.from_pretrained(
|
140 |
+
"ashhadahsan/amazon-subtheme-bert-base-finetuned",
|
141 |
)
|
142 |
model = TFBertForSequenceClassification.from_pretrained(
|
143 |
+
"ashhadahsan/amazon-subtheme-bert-base-finetuned",
|
144 |
)
|
145 |
pipeline = TextClassificationPipeline(
|
146 |
+
model=model, tokenizer=tokenizer, **tokenizer_kwargs
|
147 |
)
|
148 |
return pipeline
|
149 |
|
150 |
|
151 |
st.set_page_config(layout="wide", page_title="Amazon Review | Summarizer")
|
152 |
+
st.title(body="Amazon Review Summarizer")
|
153 |
|
154 |
+
uploaded_file = st.file_uploader(label="Choose a file", type=["xlsx", "xls", "csv"])
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
summarizer_option = st.selectbox(
|
158 |
+
label="Select Summarizer",
|
159 |
+
options=("Custom trained on the dataset", "t5-base", "t5-one-line-summary"),
|
160 |
)
|
161 |
+
col1, col2, col3 = st.columns(spec=[1, 1, 1])
|
162 |
|
163 |
with col1:
|
164 |
+
summary_yes = st.checkbox(label="Summrization", value=False)
|
165 |
|
166 |
with col2:
|
167 |
+
classification = st.checkbox(label="Classify Category", value=True)
|
168 |
|
169 |
with col3:
|
170 |
+
sub_theme = st.checkbox(label="Sub theme classification", value=True)
|
171 |
|
172 |
treshold = st.slider(
|
173 |
label="Model Confidence value",
|
|
|
181 |
ps = st.empty()
|
182 |
|
183 |
if st.button("Process", type="primary"):
|
184 |
+
themes = get_all_cats()
|
185 |
+
subthemes = get_all_subcats()
|
|
|
186 |
|
187 |
oneline = SimpleT5()
|
188 |
load_one_line_summarizer(model=oneline)
|
189 |
+
zeroline = load_zero_shot_classification_large()
|
190 |
+
bot = load_flan_t5_large()
|
191 |
|
192 |
cancel_button = st.empty()
|
193 |
cancel_button2 = st.empty()
|
194 |
cancel_button3 = st.empty()
|
195 |
if uploaded_file is not None:
|
196 |
if uploaded_file.name.split(".")[-1] in ["xls", "xlsx"]:
|
197 |
+
df = pd.read_excel(io=uploaded_file, engine="openpyxl")
|
198 |
if uploaded_file.name.split(".")[-1] in [".csv"]:
|
199 |
+
df = pd.read_csv(filepath_or_buffer=uploaded_file)
|
200 |
columns = df.columns.values.tolist()
|
201 |
columns = [x.lower() for x in columns]
|
202 |
df.columns = columns
|
|
|
212 |
progress_text = "Summarization in progress. Please wait."
|
213 |
summary = []
|
214 |
|
215 |
+
for x in stqdm(iterable=range(len(text))):
|
216 |
if cancel_button.button("Cancel", key=x):
|
217 |
del model
|
218 |
break
|
|
|
234 |
classesUnlabel = []
|
235 |
classesUnlabelZero = []
|
236 |
for x in stqdm(
|
237 |
+
iterable=text,
|
238 |
desc="Assigning Themes ...",
|
239 |
total=len(text),
|
240 |
colour="#BF1A1A",
|
241 |
):
|
242 |
+
output = themePipe(x)[0]["label"]
|
243 |
classes.append(output)
|
244 |
+
score = round(number=themePipe(x)[0]["score"], ndigits=2)
|
245 |
if score <= treshold:
|
246 |
+
onelineoutput = oneline.predict(source_text=x)[0]
|
247 |
+
|
248 |
print("hit")
|
249 |
classesUnlabel.append(
|
250 |
+
assign_labels_flant5(
|
251 |
+
bot,
|
252 |
what="theme",
|
253 |
to=onelineoutput,
|
254 |
old=themes,
|
255 |
)
|
256 |
)
|
257 |
classesUnlabelZero.append(
|
258 |
+
assign_label_zeroshot(
|
259 |
zero=zeroline, to=onelineoutput, old=themes
|
260 |
)
|
261 |
)
|
|
|
267 |
outputdf["Review Theme"] = classes
|
268 |
outputdf["Review Theme-issue-new"] = classesUnlabel
|
269 |
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
270 |
+
clean_memory(themePipe)
|
271 |
if sub_theme:
|
272 |
subThemePipe = classify_sub_theme()
|
273 |
classes = []
|
274 |
classesUnlabel = []
|
275 |
classesUnlabelZero = []
|
276 |
for x in stqdm(
|
277 |
+
iterable=text,
|
278 |
desc="Assigning Subthemes ...",
|
279 |
total=len(text),
|
280 |
colour="green",
|
281 |
):
|
282 |
+
output = subThemePipe(x)[0]["label"]
|
283 |
classes.append(output)
|
284 |
+
score = round(subThemePipe(x)[0]["score"], 2)
|
285 |
if score <= treshold:
|
286 |
onelineoutput = oneline.predict(x)[0]
|
287 |
|
|
|
|
|
288 |
print("hit")
|
289 |
classesUnlabel.append(
|
290 |
+
assign_labels_flant5(
|
291 |
+
bot,
|
292 |
what="subtheme",
|
293 |
to=onelineoutput,
|
294 |
old=subthemes,
|
295 |
)
|
296 |
)
|
297 |
classesUnlabelZero.append(
|
298 |
+
assign_label_zeroshot(
|
299 |
zero=zeroline,
|
300 |
to=onelineoutput,
|
301 |
old=subthemes,
|
|
|
310 |
outputdf["Review SubTheme-issue-new"] = classesUnlabel
|
311 |
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
312 |
|
313 |
+
clean_memory(subThemePipe)
|
314 |
|
315 |
csv = convert_df(outputdf)
|
316 |
st.download_button(
|
|
|
356 |
for x in stqdm(
|
357 |
text, desc="Assigning Themes ...", total=len(text), colour="red"
|
358 |
):
|
359 |
+
output = themePipe(x)[0]["label"]
|
360 |
classes.append(output)
|
361 |
+
score = round(themePipe(x)[0]["score"], 2)
|
362 |
if score <= treshold:
|
363 |
onelineoutput = oneline.predict(x)[0]
|
364 |
|
365 |
print("hit")
|
|
|
366 |
|
367 |
classesUnlabel.append(
|
368 |
+
assign_labels_flant5(
|
369 |
+
bot,
|
370 |
what="theme",
|
371 |
to=onelineoutput,
|
372 |
old=themes,
|
373 |
)
|
374 |
)
|
375 |
classesUnlabelZero.append(
|
376 |
+
assign_label_zeroshot(
|
377 |
zero=zeroline, to=onelineoutput, old=themes
|
378 |
)
|
379 |
)
|
|
|
384 |
outputdf["Review Theme"] = classes
|
385 |
outputdf["Review Theme-issue-new"] = classesUnlabel
|
386 |
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
387 |
+
clean_memory(themePipe)
|
388 |
|
389 |
if sub_theme:
|
390 |
subThemePipe = classify_sub_theme()
|
|
|
397 |
total=len(text),
|
398 |
colour="green",
|
399 |
):
|
400 |
+
output = subThemePipe(x)[0]["label"]
|
401 |
classes.append(output)
|
402 |
+
score = round(subThemePipe(x)[0]["score"], 2)
|
403 |
if score <= treshold:
|
404 |
onelineoutput = oneline.predict(x)[0]
|
405 |
|
|
|
406 |
print("hit")
|
407 |
classesUnlabel.append(
|
408 |
+
assign_labels_flant5(
|
409 |
+
bot,
|
410 |
what="subtheme",
|
411 |
to=onelineoutput,
|
412 |
old=subthemes,
|
413 |
)
|
414 |
)
|
415 |
classesUnlabelZero.append(
|
416 |
+
assign_label_zeroshot(
|
417 |
zero=zeroline,
|
418 |
to=onelineoutput,
|
419 |
old=subthemes,
|
|
|
428 |
outputdf["Review SubTheme-issue-new"] = classesUnlabel
|
429 |
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
430 |
|
431 |
+
clean_memory(subThemePipe)
|
432 |
|
433 |
csv = convert_df(outputdf)
|
434 |
st.download_button(
|
|
|
445 |
load_one_line_summarizer(model=model)
|
446 |
|
447 |
summary = []
|
448 |
+
for x in stqdm(iterable=range(len(text))):
|
449 |
+
if cancel_button3.button(label="Cancel", key=x):
|
450 |
del model
|
451 |
break
|
452 |
try:
|
453 |
+
summary.append(model.predict(source_text=text[x])[0])
|
454 |
except:
|
455 |
pass
|
456 |
outputdf["summary"] = summary
|
|
|
462 |
classesUnlabel = []
|
463 |
classesUnlabelZero = []
|
464 |
for x in stqdm(
|
465 |
+
iterable=text,
|
466 |
+
desc="Assigning Themes ...",
|
467 |
+
total=len(text),
|
468 |
+
colour="red",
|
469 |
):
|
470 |
+
output = themePipe(x)[0]["label"]
|
471 |
classes.append(output)
|
472 |
+
score = round(number=themePipe(x)[0]["score"], ndigits=2)
|
473 |
if score <= treshold:
|
474 |
onelineoutput = oneline.predict(x)[0]
|
475 |
|
|
|
|
|
476 |
print("hit")
|
477 |
classesUnlabel.append(
|
478 |
+
assign_labels_flant5(
|
479 |
+
bot,
|
480 |
what="theme",
|
481 |
to=onelineoutput,
|
482 |
old=themes,
|
483 |
)
|
484 |
)
|
485 |
classesUnlabelZero.append(
|
486 |
+
assign_label_zeroshot(
|
487 |
zero=zeroline, to=onelineoutput, old=themes
|
488 |
)
|
489 |
)
|
|
|
501 |
classesUnlabelZero = []
|
502 |
|
503 |
for x in stqdm(
|
504 |
+
iterable=text,
|
505 |
desc="Assigning Subthemes ...",
|
506 |
total=len(text),
|
507 |
colour="green",
|
508 |
):
|
509 |
+
output = subThemePipe(x)[0]["label"]
|
510 |
classes.append(output)
|
511 |
+
score = round(subThemePipe(x)[0]["score"], 2)
|
512 |
if score <= treshold:
|
513 |
print("hit")
|
514 |
+
onelineoutput = oneline.predict(source_text=x)[0]
|
515 |
|
|
|
516 |
classesUnlabel.append(
|
517 |
+
assign_labels_flant5(
|
518 |
+
bot,
|
519 |
what="subtheme",
|
520 |
to=onelineoutput,
|
521 |
old=subthemes,
|
522 |
)
|
523 |
)
|
524 |
classesUnlabelZero.append(
|
525 |
+
assign_label_zeroshot(
|
526 |
zero=zeroline,
|
527 |
to=onelineoutput,
|
528 |
old=subthemes,
|
|
|
537 |
outputdf["Review SubTheme-issue-new"] = classesUnlabel
|
538 |
outputdf["Review SubTheme-issue-zero"] = classesUnlabelZero
|
539 |
|
540 |
+
clean_memory(subThemePipe)
|
541 |
|
542 |
csv = convert_df(outputdf)
|
543 |
st.download_button(
|
|
|
550 |
|
551 |
except KeyError as e:
|
552 |
st.error(
|
553 |
+
body="Please Make sure that your data must have a column named text",
|
554 |
icon="π¨",
|
555 |
)
|
556 |
+
st.info(body="Text column must have amazon reviews", icon="βΉοΈ")
|
557 |
+
st.exception(e)
|
558 |
|
559 |
except BaseException as e:
|
560 |
+
logging.exception(msg="An exception was occurred")
|