Upload 2 files
Browse files- app.py +30 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
2 |
+
import torch
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
tokenizer = BertTokenizer.from_pretrained(
|
6 |
+
"ashish-001/Bert-Amazon-review-sentiment-classifier")
|
7 |
+
model = BertForSequenceClassification.from_pretrained(
|
8 |
+
"ashish-001/Bert-Amazon-review-sentiment-classifier")
|
9 |
+
|
10 |
+
|
11 |
+
def classify_text(text):
|
12 |
+
inputs = tokenizer(
|
13 |
+
text,
|
14 |
+
max_length=256,
|
15 |
+
truncation=True,
|
16 |
+
padding="max_length",
|
17 |
+
return_tensors="pt"
|
18 |
+
)
|
19 |
+
output = model(**inputs)
|
20 |
+
logits = output.logits
|
21 |
+
probs = torch.nn.functional.sigmoid(logits)
|
22 |
+
return probs
|
23 |
+
|
24 |
+
|
25 |
+
st.title("Amazon Review Sentiment classifier")
|
26 |
+
data = st.text_area("Enter or paste a review")
|
27 |
+
if st.button('Predict'):
|
28 |
+
prediction = classify_text(data)
|
29 |
+
st.header(
|
30 |
+
f"Negative Confidence: {prediction[0]}, Positive Confidence: {prediction[1]}")
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
torch==2.4.1
|
2 |
+
transformers==4.35.2
|