Upload 5 files
Browse files- .gitattributes +1 -0
- Sample.mp4 +3 -0
- app.py +102 -0
- haarcascade_frontalface_default.xml +0 -0
- requirements.txt +5 -0
- test.ipynb +88 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Sample.mp4 filter=lfs diff=lfs merge=lfs -text
|
Sample.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb48fbbfe295461889585a2c3ffe592ba208d2501018b9517f158108f11acd10
|
3 |
+
size 11293922
|
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
9 |
+
'ashish-001/deepfake-detection-using-ViT')
|
10 |
+
model = AutoModelForImageClassification.from_pretrained(
|
11 |
+
'ashish-001/deepfake-detection-using-ViT')
|
12 |
+
|
13 |
+
|
14 |
+
def classify_frame(frame):
|
15 |
+
inputs = image_processor(images=frame, return_tensors="pt")
|
16 |
+
outputs = model(**inputs)
|
17 |
+
logits = outputs.logits
|
18 |
+
probs = torch.nn.functional.sigmoid(logits)
|
19 |
+
pred = torch.argmax(logits, dim=1).item()
|
20 |
+
lab = 'Real' if pred == 1 else 'Fake'
|
21 |
+
confidence, _ = torch.max(probs, dim=1)
|
22 |
+
return f"{lab}::{format(confidence.item(), '.2f')}"
|
23 |
+
|
24 |
+
|
25 |
+
st.title("Deepfake detector")
|
26 |
+
uploaded_file = st.file_uploader(
|
27 |
+
"Upload an image or video",
|
28 |
+
type=["jpg", "jpeg", "png", "mp4", "avi", "mov", "mkv"]
|
29 |
+
)
|
30 |
+
placeholder = st.empty()
|
31 |
+
if st.button('Detect'):
|
32 |
+
if uploaded_file is not None:
|
33 |
+
clf = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
34 |
+
mime_type = uploaded_file.type
|
35 |
+
if mime_type.startswith("image"):
|
36 |
+
file_bytes = uploaded_file.read()
|
37 |
+
np_arr = np.frombuffer(file_bytes, np.uint8)
|
38 |
+
image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
|
39 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
40 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
41 |
+
faces = clf.detectMultiScale(
|
42 |
+
gray, scaleFactor=1.3, minNeighbors=5)
|
43 |
+
for (x, y, w, h) in faces:
|
44 |
+
cv2.rectangle(image_rgb, (x, y), (x+w, y+h), (0, 0, 255), 2)
|
45 |
+
face = image_rgb[y:y + h, x:x + w]
|
46 |
+
img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
47 |
+
label = classify_frame(img)
|
48 |
+
new_frame = cv2.putText(
|
49 |
+
image_rgb, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
50 |
+
st.image(new_frame)
|
51 |
+
|
52 |
+
elif mime_type.startswith('video'):
|
53 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file:
|
54 |
+
temp_file.write(uploaded_file.read())
|
55 |
+
temp_video_path = temp_file.name
|
56 |
+
cap = cv2.VideoCapture(temp_video_path)
|
57 |
+
if not cap.isOpened():
|
58 |
+
st.error("Error: Cannot open video file.")
|
59 |
+
else:
|
60 |
+
while True:
|
61 |
+
ret, frame = cap.read()
|
62 |
+
if not ret:
|
63 |
+
break
|
64 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
65 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
66 |
+
faces = clf.detectMultiScale(
|
67 |
+
gray, scaleFactor=1.3, minNeighbors=5)
|
68 |
+
for (x, y, w, h) in faces:
|
69 |
+
cv2.rectangle(
|
70 |
+
frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
|
71 |
+
face = frame[y:y + h, x:x + w]
|
72 |
+
img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
73 |
+
label = classify_frame(img)
|
74 |
+
frame = cv2.putText(
|
75 |
+
frame, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
76 |
+
placeholder.image(frame)
|
77 |
+
cap.release()
|
78 |
+
|
79 |
+
if st.button('Use Example Video'):
|
80 |
+
clf = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
81 |
+
cap = cv2.VideoCapture("Sample.mp4")
|
82 |
+
if not cap.isOpened():
|
83 |
+
st.error("Error: Cannot open video file.")
|
84 |
+
else:
|
85 |
+
st.write(f"Video credits: 'Deep Fakes' Are Becoming More Realistic Thanks To New Technology. Link:https://www.youtube.com/watch?v=CDMVaQOvtxU")
|
86 |
+
while True:
|
87 |
+
ret, frame = cap.read()
|
88 |
+
if not ret:
|
89 |
+
break
|
90 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
91 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
92 |
+
faces = clf.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5)
|
93 |
+
for (x, y, w, h) in faces:
|
94 |
+
cv2.rectangle(
|
95 |
+
frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
|
96 |
+
face = frame[y:y + h, x:x + w]
|
97 |
+
img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
98 |
+
label = classify_frame(img)
|
99 |
+
frame = cv2.putText(
|
100 |
+
frame, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
101 |
+
placeholder.image(frame)
|
102 |
+
cap.release()
|
haarcascade_frontalface_default.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.29.0
|
2 |
+
transformers==4.35.2
|
3 |
+
opencv-python==4.7.0.72
|
4 |
+
torch==2.4.1
|
5 |
+
numpy==1.23.5
|
test.ipynb
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stderr",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"e:\\miniconda\\lib\\site-packages\\transformers\\utils\\generic.py:441: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.\n",
|
13 |
+
" _torch_pytree._register_pytree_node(\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"from transformers import AutoImageProcessor, AutoModelForImageClassification"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 2,
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [
|
26 |
+
{
|
27 |
+
"name": "stderr",
|
28 |
+
"output_type": "stream",
|
29 |
+
"text": [
|
30 |
+
"e:\\miniconda\\lib\\site-packages\\transformers\\utils\\generic.py:309: FutureWarning: `torch.utils._pytree._register_pytree_node` is deprecated. Please use `torch.utils._pytree.register_pytree_node` instead.\n",
|
31 |
+
" _torch_pytree._register_pytree_node(\n"
|
32 |
+
]
|
33 |
+
}
|
34 |
+
],
|
35 |
+
"source": [
|
36 |
+
"image_processor = AutoImageProcessor.from_pretrained('model')\n",
|
37 |
+
"model = AutoModelForImageClassification.from_pretrained('model')"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": 4,
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [
|
45 |
+
{
|
46 |
+
"name": "stdout",
|
47 |
+
"output_type": "stream",
|
48 |
+
"text": [
|
49 |
+
"0.9\n"
|
50 |
+
]
|
51 |
+
}
|
52 |
+
],
|
53 |
+
"source": [
|
54 |
+
"import numpy as np\n",
|
55 |
+
"a=[0.1,0.9]\n",
|
56 |
+
"print(np.max(a))"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": null,
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [],
|
64 |
+
"source": []
|
65 |
+
}
|
66 |
+
],
|
67 |
+
"metadata": {
|
68 |
+
"kernelspec": {
|
69 |
+
"display_name": "base",
|
70 |
+
"language": "python",
|
71 |
+
"name": "python3"
|
72 |
+
},
|
73 |
+
"language_info": {
|
74 |
+
"codemirror_mode": {
|
75 |
+
"name": "ipython",
|
76 |
+
"version": 3
|
77 |
+
},
|
78 |
+
"file_extension": ".py",
|
79 |
+
"mimetype": "text/x-python",
|
80 |
+
"name": "python",
|
81 |
+
"nbconvert_exporter": "python",
|
82 |
+
"pygments_lexer": "ipython3",
|
83 |
+
"version": "3.10.10"
|
84 |
+
}
|
85 |
+
},
|
86 |
+
"nbformat": 4,
|
87 |
+
"nbformat_minor": 2
|
88 |
+
}
|