import streamlit as st from transformers import AutoImageProcessor, AutoModelForImageClassification import cv2 import torch import numpy as np import tempfile image_processor = AutoImageProcessor.from_pretrained( 'ashish-001/deepfake-detection-using-ViT') model = AutoModelForImageClassification.from_pretrained( 'ashish-001/deepfake-detection-using-ViT') def classify_frame(frame): inputs = image_processor(images=frame, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.sigmoid(logits) pred = torch.argmax(logits, dim=1).item() lab = 'Real' if pred == 1 else 'Fake' confidence, _ = torch.max(probs, dim=1) return f"{lab}::{format(confidence.item(), '.2f')}" st.title("Deepfake detector") uploaded_file = st.file_uploader( "Upload an image or video", type=["jpg", "jpeg", "png", "mp4", "avi", "mov", "mkv"] ) placeholder = st.empty() if st.button('Detect'): if uploaded_file is not None: clf = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') mime_type = uploaded_file.type if mime_type.startswith("image"): file_bytes = uploaded_file.read() np_arr = np.frombuffer(file_bytes, np.uint8) image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = clf.detectMultiScale( gray, scaleFactor=1.3, minNeighbors=5) for (x, y, w, h) in faces: cv2.rectangle(image_rgb, (x, y), (x+w, y+h), (0, 0, 255), 2) face = image_rgb[y:y + h, x:x + w] img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) label = classify_frame(img) new_frame = cv2.putText( image_rgb, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) st.image(new_frame) elif mime_type.startswith('video'): with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_file: temp_file.write(uploaded_file.read()) temp_video_path = temp_file.name cap = cv2.VideoCapture(temp_video_path) if not cap.isOpened(): st.error("Error: Cannot open video file.") else: while True: ret, frame = cap.read() if not ret: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = clf.detectMultiScale( gray, scaleFactor=1.3, minNeighbors=5) for (x, y, w, h) in faces: cv2.rectangle( frame, (x, y), (x+w, y+h), (0, 0, 255), 2) face = frame[y:y + h, x:x + w] img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) label = classify_frame(img) frame = cv2.putText( frame, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) placeholder.image(frame) cap.release() else: st.write("Please upload an image or video") if st.button('Use Example Video'): clf = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture("Sample.mp4") if not cap.isOpened(): st.error("Error: Cannot open video file.") else: st.write(f"Video credits: 'Deep Fakes' Are Becoming More Realistic Thanks To New Technology. Link:https://www.youtube.com/watch?v=CDMVaQOvtxU") while True: ret, frame = cap.read() if not ret: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = clf.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5) for (x, y, w, h) in faces: cv2.rectangle( frame, (x, y), (x+w, y+h), (0, 0, 255), 2) face = frame[y:y + h, x:x + w] img = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) label = classify_frame(img) frame = cv2.putText( frame, label, (x, y+h+20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) placeholder.image(frame) cap.release()