|
import chromadb
|
|
from chromadb.config import Settings
|
|
import torchvision.models as models
|
|
import torch
|
|
from torchvision import transforms
|
|
from PIL import Image
|
|
import logging
|
|
import streamlit as st
|
|
import requests
|
|
import json
|
|
import uuid
|
|
import os
|
|
|
|
try:
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
@st.cache_resource
|
|
def load_mobilenet_model():
|
|
device = 'cpu'
|
|
model = models.mobilenet_v3_small(pretrained=False)
|
|
model.classifier[3] = torch.nn.Linear(1024, 768)
|
|
model.load_state_dict(torch.load(
|
|
'mobilenet_v3_small_distilled_new_state_dict.pth', map_location=device))
|
|
model.eval().to(device)
|
|
return model
|
|
|
|
@st.cache_resource
|
|
def load_chromadb():
|
|
chroma_client = chromadb.PersistentClient(
|
|
path='data', settings=Settings(anonymized_telemetry=False))
|
|
collection = chroma_client.get_collection(name='images')
|
|
return collection
|
|
|
|
model = load_mobilenet_model()
|
|
logger.info("MobileNet loaded")
|
|
collection = load_chromadb()
|
|
logger.info("ChromaDB loaded")
|
|
logger.info(
|
|
f"Connected to ChromaDB collection images with {collection.count()} items")
|
|
|
|
preprocess = transforms.Compose([
|
|
transforms.Resize((224, 224)),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[
|
|
0.229, 0.224, 0.225])
|
|
])
|
|
|
|
def get_image_embedding(image):
|
|
if isinstance(image, str):
|
|
img = Image.open(image).convert('RGB')
|
|
else:
|
|
img = Image.open(image).convert('RGB')
|
|
input_tensor = preprocess(img).unsqueeze(0).to('cpu')
|
|
with torch.no_grad():
|
|
student_embedding = model(input_tensor)
|
|
|
|
return torch.nn.functional.normalize(student_embedding, p=2, dim=1).squeeze(0).tolist()
|
|
|
|
def save_image(image_file):
|
|
unique_filename = f"{image_file.name}"
|
|
save_path = os.path.join('images', unique_filename)
|
|
with open(save_path, "wb") as f:
|
|
f.write(image_file.getbuffer())
|
|
return save_path
|
|
|
|
def resize_image(image_path, size=(224, 224)):
|
|
if isinstance(image_path, str):
|
|
img = Image.open(image_path).convert("RGB")
|
|
else:
|
|
|
|
img = Image.open(image_path).convert("RGB")
|
|
img_resized = img.resize(size, Image.LANCZOS)
|
|
return img_resized
|
|
|
|
st.sidebar.header("Upload Images")
|
|
image_files = st.sidebar.file_uploader(
|
|
"Upload images", type=["png", "jpg", "jpeg"], accept_multiple_files=True)
|
|
num_images = st.sidebar.slider(
|
|
"Number of results to return", min_value=1, max_value=10, value=3)
|
|
|
|
if image_files:
|
|
st.sidebar.subheader(
|
|
"Add Images to collection")
|
|
if st.sidebar.button("Add uploaded images"):
|
|
for idx, image_file in enumerate(image_files):
|
|
image_embedding = get_image_embedding(image_file)
|
|
saved_path = save_image(image_file)
|
|
unique_id = str(uuid.uuid4())
|
|
metadata = {
|
|
'path': f'images/{image_file.name}', "type": "photo"
|
|
}
|
|
collection.add(
|
|
embeddings=[image_embedding],
|
|
ids=[unique_id],
|
|
metadatas=[metadata]
|
|
)
|
|
st.sidebar.success(
|
|
f"Image {image_file.name} added to the collection")
|
|
|
|
st.title('Image Search Using Text')
|
|
st.write(
|
|
"The images stored in this database are sourced from the [COCO 2017 Validation Dataset](https://cocodataset.org/#download).")
|
|
st.write('Enter the text to search for images with matching description')
|
|
text_input = st.text_input("Description", "Playground")
|
|
if st.button("Search"):
|
|
if text_input.strip():
|
|
params = {'text': text_input}
|
|
response = requests.get(
|
|
'https://ashish-001-text-embedding-api.hf.space/embedding', params=params)
|
|
if response.status_code == 200:
|
|
logger.info("Embedding returned by API successfully")
|
|
data = json.loads(response.content)
|
|
embedding = data['embedding']
|
|
results = collection.query(
|
|
query_embeddings=[embedding],
|
|
n_results=num_images
|
|
)
|
|
images = [results['metadatas'][0][i]['path']
|
|
for i in range(len(results['metadatas'][0]))]
|
|
distances = [results['distances'][0][i]
|
|
for i in range(len(results['metadatas'][0]))]
|
|
if images:
|
|
cols_per_row = 3
|
|
rows = (len(images)+cols_per_row-1)//cols_per_row
|
|
for row in range(rows):
|
|
cols = st.columns(cols_per_row)
|
|
for col_idx, col in enumerate(cols):
|
|
img_idx = row*cols_per_row+col_idx
|
|
if img_idx < len(images):
|
|
resized_img = resize_image(
|
|
images[img_idx], size=(224, 224))
|
|
col.image(resized_img,
|
|
caption=f"Image {img_idx+1}\ndistance {distances[img_idx]}", use_container_width=True)
|
|
else:
|
|
st.write("No image found")
|
|
else:
|
|
st.write("Please try again later")
|
|
logger.info(f"status code {response.status_code} returned")
|
|
else:
|
|
st.write("Please enter text in the text area")
|
|
|
|
except Exception as e:
|
|
logger.info(f"Exception occured: {e}")
|
|
|