File size: 1,708 Bytes
7f6f099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import tensorflow as tf
from tensorflow.keras.utils import pad_sequences
import pickle
import streamlit as st
import numpy as np
from PIL import Image
from tensorflow.keras.applications.xception import preprocess_input
import logging
tf.get_logger().setLevel(logging.ERROR)

model = tf.keras.models.load_model('image_captioning_model.h5')
feature_extractor = tf.keras.models.load_model(r"feature_extractor.h5")
with open(r'tokenizer_data.pkl', 'rb') as f:
    pickle_data = pickle.load(f)
    tokenizer = pickle_data['tokenizer']
    idx_to_word = pickle_data['word_mapping']
max_length = 35


def generate_caption(img):
    in_text = 'startseq'
    new_img = Image.open(img)
    image = np.asarray(new_img.resize((299, 299)))
    image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
    image = preprocess_input(image)
    feature = feature_extractor.predict(image, verbose=0)
    for i in range(max_length):
        sequence = tokenizer.texts_to_sequences([in_text])[0]
        sequence = pad_sequences([sequence], max_length)
        yhat = model.predict([feature, sequence], verbose=0)
        yhat = np.argmax(yhat)
        if yhat not in idx_to_word.keys():
            break
        else:
            word = idx_to_word[yhat]
            if word == 'endseq':
                break
            in_text += " " + word

    return in_text.replace("startseq", '')


st.title("Image Caption Generator")
img = st.file_uploader("Upload image", type=["png", "jpg", "jpeg"],)
if img is not None:
    st.image(Image.open(img), width=300)

if st.button("Generate Caption"):
    if img is not None:
        st.write(generate_caption(img))
    else:
        st.write("Please upload an image")